logo

Cavitation Liquid Phase Exfoliation of Graphene

PDF Publication Title:

Cavitation Liquid Phase Exfoliation of Graphene ( cavitation-liquid-phase-exfoliation-graphene )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

16. Karagiannidis, P. G., et al. Microfluidization of graphite and formulation of graphene-based conductive inks. ACS Nano 11, 2742-2755 (2017). 17. Backes, C., et al. Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10, 1589-1601 (2016). 18. Lauterborn, W., Kurz, T., Geisler, R., Schanz, D. & Lindau, O. Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason. Sonochem. 14, 484-491 (2007). 19. Leighton, T. The Acoustic Bubble, Chapter 4 (Academic press, London, 2012). 20. Pecha, R. & Gompf, B. Microimplosions: Cavitation collapse and shock wave emission on a nanosecond time scale. Phys. Rev. Lett. 84, 1328 (2000). 21. Dular, M., Bachert, B., Stoffel, B. & Širok, B. Relationship between cavitation structures and cavitation damage. Wear 257, 1176-1184 (2004). 22. Wang, L., et al. Towards a reference cavitating vessel Part III—design and acoustic pressure characterization of a multi-frequency sonoreactor. Metrologia 52, 575 (2015). 23. Hodnett, M. & Zeqiri, B. Toward a reference ultrasonic cavitation vessel: Part 2-Investigating the spatial variation and acoustic pressure threshold of inertial cavitation in a 25 kHz ultrasound field. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 55, 1809-1822 (2008). 24. Hodnett, M., Chow, R. & Zeqiri, B. High-frequency acoustic emissions generated by a 20 kHz sonochemical horn processor detected using a novel broadband acoustic sensor: a preliminary study. Ultrason. Sonochem. 11, 441-454 (2004). 25. Hodnett, M., Choi, M. J. & Zeqiri, B. Towards a reference ultrasonic cavitation vessel. Part 1: Preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell. Ultrason. Sonochem. 14, 29-40 (2007). 26. Robertson, J. & Becker, S. Influence of acoustic reflection on the inertial cavitation dose in a Franz diffusion cell. Ultrasound Med. Biol. 44, 1100-1109 (2018). 27. Chen, W., Matula, T. J., Brayman, A. A. & Crum, L. A. A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J. Acoust. Soc. Am. 113, 643-651 (2003). 28. Hwang, J. H., Tu, J., Brayman, A. A., Matula, T. J. & Crum, L. A. Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med. Biol. 32, 1611-1619 (2006). 29. Plesset, M. S. Temperature effects in cavitation damage. Journal of Basic Engineering 94, 559-563 (1972). 30. Kouroupis-Agalou, K., et al. Fragmentation and exfoliation of 2-dimensional materials: a statistical approach. Nanoscale 6, 5926-5933 (2014). 31. Sesis, A., et al. Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes. The Journal of Physical Chemistry B 117, 15141-15150 (2013). 17

PDF Image | Cavitation Liquid Phase Exfoliation of Graphene

cavitation-liquid-phase-exfoliation-graphene-017

PDF Search Title:

Cavitation Liquid Phase Exfoliation of Graphene

Original File Name Searched:

1809-07630.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP