logo

Electrochemical Production of Graphene Analogs

PDF Publication Title:

Electrochemical Production of Graphene Analogs ( electrochemical-production-graphene-analogs )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 006

of the product is 10% or less; therefore, AC exfoliation is attractive to obtain a graphene-like product. Yang added square wave to graphite sheet and obtained a low oxidized product.15 AC method can be applied for simultaneous exfoliation and functionalization; Li used AgNO3 and AC exfoliation and prepared Ag/graphene composite in one step.76 Conclusion This review summarizes the raw materials and techniques for the electrochemical exfoliation of graphite materials. The electrochemical production of graphene analogs is attractive as an easy and safe exfoliation method beyond chemical oxidation. Four types of graphite sources, such as HOPG, rod, foil, and powder, are available that differ in the physical and chemical properties and shapes. Depending on the types of graphite and electrochemical conditions, the product properties can be modulated. Traditionally employed electrolytes are sulfuric acid and sulfate. The solvent is predominantly water, while some organic solvents and ionic liquids, such as imidazolium and ammonium salts, can also be used. As an electrochemical condition, a voltage of 5 to 10V is often applied. The constant current process is suitable for large-scale production. By setting appropriate electrochemical conditions, graphene analogs with desirable chemical and physical properties can be produced. A remaining issue is the uniformity of the product, which depends on the crystallinity of graphite raw material. Improvement of graphite production technologies and careful choice of the electrochemical conditions toward desirable product properties will be a key to future industrialization of graphene-like materials. References 1 K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, J. Am. Chem. Soc. 2014, 136, 6083. 2 Z. Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo, Adv. Funct. Mater. 2013, 23, 4684. 3 P. R. Singh, X. Zeng, J. Phys. Chem. C 2011, 115, 17429. 4 V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, R. Vijayaraghavan, Adv. Funct. Mater. 2012, 22, 2352. 5 D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, T. Ryhänen, Chem. Commun. 2012, 48, 1239. 6 W. Biberacher, A. Lerf, J. O. Besenhard, H. Mhwald, T. Butz, Layered Mater. 1982, 17, 8. 7 J. O. Besenhard, E. Wudy, H. Möhwald, J. J. Nickl, W. Biberacher, W. Foag, Synth. Met. 1983, 7, 185. 8 A. Metrot, J. E. Fischer, Synth. Met. 1981, 3, 201. 9 W. Huang, R. Frech, J. Electrochem. Soc. 1998, 145, 765. 10 A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Langmuir 2003, 19, 6050. 11 J. O. Besenhard, H. P. Fritz, Angew. Chem., Int. Ed. Engl. 1983, 22, 950. 12 A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. 13 A. T. Najafabadi, E. Gyenge, Carbon 2015, 84, 449. 14 A. Ejigu, I. A. Kinloch, R. A. W. Dryfe, ACS Appl. Mater. Interfaces 2017, 9, 710. 508 | Chem. Lett. 2021, 50, 503–509 | doi:10.1246/cl.200780 15 S. Yang, A. G. Ricciardulli, S. Liu, R. Dong, M. R. Lohe, A. Becker, M. A. Squillaci, P. Samorì, K. Müllen, X. Feng, Angew. Chem., Int. Ed. 2017, 56, 6669. 16 B. D. L. Campéon, M. Akada, M. S. Ahmad, Y. Nishikawa, K. Gotoh, Y. Nishina, Carbon 2020, 158, 356. 17 B. Gurzęda, P. Florczak, M. Kempiński, B. Peplińska, P. Krawczyk, S. Jurga, Carbon 2016, 100, 540. 18 W. S. Hummers, Jr., R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339. 19 L. Staudenmaier, Ber. Dtsch. Chem. Ges. 1898, 31, 1481. 20 F. Liu, C. Wang, X. Sui, M. A. Riaz, M. Xu, L. Wei, Y. Chen, Carbon Energy 2019, 1, 173. 21 A. M. Abdelkader, A. J. Cooper, R. A. W. Dryfe, I. A. Kinloch, Nanoscale 2015, 7, 6944. 22 P. P. Brisebois, M. Siaj, J. Mater. Chem. C 2020, 8, 1517. 23 H. X. Linh, P. T. Oanh, N. N. Huy, P. Van Hao, P. N. Minh, P. N. Hong, D. Van Thanh, Mater. Lett. 2019, 250, 16. 24 K. Zhu, X. Ren, X. Sun, L. Zhu, Z. Sun, Electrocatalysis 2019, 10, 549. 25 S. Yang, S. Brüller, Z.-S. Wu, Z. Liu, K. Parvez, R. Dong, F. Richard, P. Samorì, X. Feng, K. Müllen, J. Am. Chem. Soc. 2015, 137, 13927. 26 K. J. Aoki, H. Wang, J. Chen, T. Nishiumi, Electrochim. Acta 2014, 130, 381. 27 J. Lu, J. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano 2009, 3, 2367. 28 Y. R. Leroux, J.-F. Bergamini, S. Ababou, J.-C. Le Breton, P. Hapiot, J. Electroanal. Chem. 2015, 753, 42. 29 K. W. Hathcock, J. C. Brumfield, C. A. Goss, E. A. Irene, R. W. Murray, Anal. Chem. 1995, 67, 2201. 30 E. Bourelle, B. Claude-montigny, A. Metrot, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1998, 310, 321. 31 C.-Y. Yang, C.-L. Wu, Y.-H. Lin, L.-H. Tsai, Y.-C. Chi, J.-H. Chang, C.-I. Wu, H.-K. Tsai, D.-P. Tsai, G.-R. Lin, Opt. Mater. Express 2013, 3, 1893. 32 C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, L.-J. Li, ACS Nano 2011, 5, 2332. 33 S. Shahrokhian, R. Mohammadi, M. K. Amini, Electrochim. Acta 2016, 206, 317. 34 R. Yivlialin, L. Magagnin, L. Duò, G. Bussetti, Electrochim. Acta 2018, 276, 352. 35 G. Bussetti, M. Campione, A. Bossi, R. Yivlialin, L. Duò, J. Microsc. 2020, 280, 222. 36 W. Zhang, Y. Zeng, N. Xiao, H. H. Hng, Q. Yan, J. Mater. Chem. 2012, 22, 8455. 37 H. Wang, K. Zhu, L. Yan, C. Wei, Y. Zhang, C. Gong, J. Guo, J. Zhang, D. Zhang, J. Zhang, Chem. Commun. 2019, 55, 5805. 38 H. Tang, P. He, T. Huang, Z. Cao, P. Zhang, G. Wang, X. Wang, G. Ding, X. Xie, Carbon 2019, 143, 559. 39 X. Hu, C. Chen, J. Yan, B. Mao, J. Power Sources 2015, 293, 187. 40 J. Wang, K. K. Manga, Q. Bao, K. P. Loh, J. Am. Chem. Soc. 2011, 133, 8888. 41 K. Chen, D. Xue, Mater. Res. Bull. 2017, 96, 281. 42 A. K. Jehad, K. Kocabas, M. Yurddaskal, J. Mater. Sci.: Mater. Electron. 2020, 31, 7022. 43 I. Baldea, D. Olteanu, G. A. Filip, F. Pogacean, M. Coros, M. Suciu, S. C. Tripon, M. Cenariu, L. Magerusan, R.-I. Stefan-van Staden, S. Pruneanu, Carbon 2020, 158, 267. © 2021 The Chemical Society of Japan

PDF Image | Electrochemical Production of Graphene Analogs

electrochemical-production-graphene-analogs-006

PDF Search Title:

Electrochemical Production of Graphene Analogs

Original File Name Searched:

cl-200780.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP