logo

electrochemical route to holey graphene nanosheets

PDF Publication Title:

electrochemical route to holey graphene nanosheets ( electrochemical-route-holey-graphene-nanosheets )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

D.F. Carrasco, J.I. Paredes, S. Villar-Rodil et al. Carbon 195 (2022) 57e68 [23] Z. Tian, P. Yu, S.E. Lowe, A.G. Pandolfo, T.R. Gengenbach, K.M. Nairn, J. Song, X. Wang, Y.L. Zhong, D. Li, Facile electrochemical approach for the production of graphite oxide with tunable chemistry, Carbon 112 (2017) 185e191. [24] J. Cao, P. He, M.A. Mohammed, X. Zhao, R.J. Young, B. Derby, I.A. Kinloch, R.A.W. Dryfe, Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide, J. Am. Chem. Soc. 139 (2017) 17446e17456. [25] S. Pei, Q. Wei, K. Huang, H.-M. Cheng, W. Ren, Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation, Nat. Commun. 9 (2018) 145. [26] M.J. Fernandez-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís- Fernandez, A. Martínez-Alonso, J.M.D. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C 114 (2010) 6426e6432. [27] J.M. Munuera, J.I. Paredes, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascon, A simple strategy to improve the yield of graphene nanosheets in the anodic exfoliation of graphite foil, Carbon 115 (2017) 625e628. [28] P. Yu, Z. Xiong, H. Zhan, K. Xie, Y.L. Zhong, G.P. Simon, D. Li, Electrochemically- derived graphene oxide membranes with high stability and superior ionic sieving, Chem. Commun. 55 (2019) 4075e4078. [29] K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Müllen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Am. Chem. Soc. 136 (2014) 6083e6091. [30] B. Ossonon, D. Belanger, Functionalization of graphene sheets by the diazo- nium chemistry during electrochemical exfoliation of graphite, Carbon 111 (2017) 83e93. [31] J.M. Munuera, J.I. Paredes, S. Villar-Rodil, M. Ayan-Varela, A. Martínez-Alonso, J.M.D. Tascon, Electrolytic exfoliation of graphite in water with multifunc- tional electrolytes: en route towards high quality, oxide-free graphene flakes, Nanoscale 8 (2016) 2982e2998. [32] D. Parviz, F. Irin, S.A. Shah, S. Das, C.B. Sweeney, M.J. Green, Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene, Adv. Mater. 28 (2016) 8796e8818. [33] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon 50 (2012) 3210e3228. [34] P.P. Brisebois, M. Siaj, Harvesting graphene oxide e years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation, J. Mater. Chem. C 8 (2020) 1517e1547. [35] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dis- persions of graphene nanosheets, Nat. Nanotechnol. 3 (2008) 101e105. [36] J. Hu, H. Zeng, C. Wang, Z. Li, C. Kan, Y. Liu, Interband p plasmon of graphene: strong small-size and field-enhancement effects, Phys. Chem. Chem. Phys. 16 (2014) 23483e23491. [37] J.-W.T. Seo, A.A. Green, A.L. Antaris, M.C. Hersam, High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers, J. Phys. Chem. Lett. 2 (2011) 1004e1008. [38] D. Briggs, M. P Seah, Practical surface analysis, in: Auger and X-Ray Photo- electron Spectroscopy, second ed. vol. 1, John Wiley & Sons, 1990, p. 131, 448. [39] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys. 9 (2007) 1276e1290. [40] J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices, Chem. Soc. Rev. 47 (2018) 1822e1873. [41] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B 61 (2000) 14095e14107. [42] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8 (2013) 235e246. [43] L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett. 11 (2011) 3190e3196. [44] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater. 19 (2009) 2577e2583. [45] J.S. Roh, H.W. Yoon, L. Zhang, J.-Y. Kim, J. Guo, H.W. Kim, Carbon lattice structures in nitrogen-doped reduced graphene oxide: implications for carbon-based electrical conductivity, ACS Appl. Nano Mater. 4 (2021) 7897e7904. [46] U. Zielke, K.J. Hüttinger, W.P. Hoffman, Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon 34 (1996) 983e998. [47] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfa~o, Modification of the surface chemistry of activated carbons, Carbon 37 (1999) 1379e1389. [48] A. Sanchez-Sanchez, F. Suarez-García, A. Martínez-Alonso, J.M.D. Tascon, Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method, Carbon 62 (2013) 193e203. [49] I. Jung, D.A. Field, N.J. Clark, Y. Zhu, D. Yang, R.D. Piner, S. Stankovich, D.A. Dikin, H. Geisler, C.A. Ventrice, R.S. Ruoff, Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption, J. Phys. Chem. C 113 (2009) 18480e18486. [50] P. Solís-Fernandez, R. Rozada, J.I. Paredes, S. Villar-Rodil, M.J. Fernandez-Me- rino, L. Guardia, A. Martínez-Alonso, J.M.D. Tascon, Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide, J. Alloys Compd. 536S (2012) S532eS537. [51] A. Lipatov, M.J.-F. Guinel, D.S. Muratov, V.O. Vanyushin, P.M. Wilson, A. Kolmakov, A. Sinitskii, Low-temperature thermal reduction of graphene oxide: in situ correlative structural, thermal desorption, and electrical trans- port measurements, Appl. Phys. Lett. 112 (2018), 053103. [52] A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide, Nat. Chem. 2 (2010) 581e587. [53] T. Sun, S. Fabris, S. Baroni, Surface precursors and reaction mechanisms for the thermal reduction of graphene basal surfaces oxidized by atomic oxygen, J. Phys. Chem. C 115 (2011) 4730e4737. [54] R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi, S. Lizzit, Dual path mechanism in the thermal reduction of graphene oxide, J. Am. Chem. Soc. 133 (2011) 17315e17321. [55] F. Raffone, F. Savazzi, G. Cicero, Molecular dynamics study of the pore for- mation in single layer graphene oxide by a thermal reduction process, Phys. Chem. Chem. Phys. 23 (2021) 11831e11836. [56] D. Wang, R. Dai, X. Zhang, L. Liu, H. Zhuang, Y. Lu, Y. Wang, Y. Liao, Q. Nian, Scalable and controlled creation of nanoholes in graphene by microwave- assisted chemical etching for improved electrochemical properties, Carbon 161 (2020) 880e891. [57] A. Vittore, M.R. Acocella, G. Guerra, Edge-oxidation of graphites by hydrogen peroxide, Langmuir 35 (2019) 2244e2250. [58] V.D. Nithya, A review on holey graphene electrode for supercapacitor, J. Energy Storage 44 (2021), 103380. [59] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, J. Phys. Chem. C 122 (2018) 194e206. [60] A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond, Chem. Soc. Rev. 48 (2019) 1272e1341. [61] B.E. Conway, Electrochemical Supercapacitors. Scientific Fundamentals and Technological Applications, Kluwer Academics/Plenum Publishers, New York, 1999, p. 493. [62] J. Zhang, X.S. Zhao, On the configuration of supercapacitors for maximizing electrochemical performance, ChemSusChem 5 (2012) 818e841. [63] S. Zhang, N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater. 5 (2015), 1401401. [64] S. Zhao, D.-W. Wang, R. Amal, L. Dai, Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage, Adv. Mater. 31 (2019), 1801526. [65] J. Ortiz-Medina, Z. Wang, R. Cruz-Silva, A. Morelos-Gomez, F. Wang, X. Yao, M. Terrones, M. Endo, Defect engineering and surface functionalization of nanocarbons for metal-free catalysis, Adv. Mater. 31 (2019), 1805717. [66] P.Solís-Fernandez,J.I.Paredes,S.Villar-Rodil,L.Guardia,M.J.Fernandez- Merino, G. Dobrik, L.P. Biro, A. Martínez-Alonso, J.M.D. Tascon, Global and local oxidation behavior of reduced graphene oxide, J. Phys. Chem. C 115 (2011) 7956e7966. [67] H. Chang, A.J. Bard, Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite, J. Am. Chem. Soc. 113 (1991) 5588e5596. [68] F. Stevens, L.A. Kolodny, T.P. Beebe, Kinetics of graphite oxidation: monolayer and multilayer etch pits in HOPG studied by STM, J. Phys. Chem. B 102 (1998) 10799e10804. [69] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520e2531. [70] J.M. Baptista, J.S. Sagu, U. Wijayantha, K. Lobato, State-of-the-art materials for high power and high energy supercapacitors: performance metrics and ob- stacles for the transition from lab to industrial scale e a critical approach, Chem. Eng. J. 374 (2019) 1153e1179. [71] Z. Song, L. Miao, L. Li, D. Zhu, Y. Lv, W. Xiong, H. Duan, Z. Wang, L. Gan, M. Liu, A universal strategy to obtain highly redox-active porous carbons for efficient energy storage, J. Mater. Chem. A 8 (2020) 3717e3725. [72] X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor, J. Mater. Chem. A 7 (2019) 7541e7547. 68

PDF Image | electrochemical route to holey graphene nanosheets

electrochemical-route-holey-graphene-nanosheets-012

PDF Search Title:

electrochemical route to holey graphene nanosheets

Original File Name Searched:

Electrochemical route-Carrasco-Carbon.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP