logo

Graphene Oxide Photoreduction Recovers Graphene

PDF Publication Title:

Graphene Oxide Photoreduction Recovers Graphene ( graphene-oxide-photoreduction-recovers-graphene )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

excitation, the optical properties of rGO begin to deviate strongly from graphene. Owing to increasing local dis- order and broken lattice symmetry, extreme photother- mal reduction yields hot electron cooling rates that are faster than pristine graphene. Subsequent photoreduc- tion accelerates the extracted hot electron cooling rate 10-12x, revealing how photodamage induces local disor- der to mediate faster hot electron cooling. On longer, >50 ps timescales, rGO also exhibits a slower decay re- sponse than graphene owing to many isolated graphene quantum dot (GQD) regions and oxygenated edge trap states which serve to delay the ground state recovery. Using probe energies in the visible wavelength range at 1.8 eV, Figs. 1c and 4 shows that photothermal reduc- tion does not recover pristine graphene properties, as ev- idenced by the slower decay kinetics of all rGO samples relative to graphene. The prevalence of isolated GQDs regions and oxygenated-edge trap states each create fur- ther bottlenecks of electronic relaxation that slow the effective relaxation. Fortunately, we find these long life- times of rGO are no longer oberved below 1.3 eV optical excitations, as there are no discernible GQD sub-lattice states large enough to creae a resonance at these energies. 1 G. Yang, L. Li, W. B. Lee, and M. C. Ng, Science and Technology of Advanced Materials 19, 613 (2018). 2 K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stew- art, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Letters 9, 1058 (2009). 3 T. Mueller, F. Xia, and P. Avouris, Nat Photon 4, 297 (2010). 4 M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, Nano Lett. 11, 4134 (2011). 5 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat Photon 4, 611 (2010). 6 J. Yan, M.-H. Kim, J. A. Elle, A. B. Sushkov, G. S. Jenk- ins, H. M. Milchberg, M. S. Fuhrer, and H. D. Drew, Nature Nanotechnology (2012), 10.1038/nnano.2012.88. 7 P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Moro- zov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Nano Lett. 8, 1704 (2008). 8 K. C. Fong and K. C. Schwab, Physical Review X 2, 031006 (2012). 9 Y. Wu, C. F. Fu, Q. Huang, P. Zhang, P. Cui, J. Ran, J. Yang, and T. Xu, ACS Nano 15, 7586 (2021). 10 M. A. Velasco-Soto, S. A. P ́erez-Garc ́ıa, J. Alvarez- Quintana, Y. Cao, L. Nyborg, and L. Licea-Jim ́enez, Car- bon 93, 967 (2015). 11 T. Ji, Y. Hua, M. Sun, and N. Ma, Carbon 54, 412 (2012). 12 H. Yang, H. Hu, Z. Ni, C. K. Poh, C. Cong, J. Lin, and T. Yu, Carbon 62, 422 (2013). 13 H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S. A. T. Redfern, and G. Yang, Optics Express 22, 19375 (2014). 14 Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, and J. Tian, Applied Physics Letters 94, 1 (2009). 15 M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, Collectively, these results show many of the desirable op- toelectronics properties of 2D graphene can be replicated using selectively reduced graphene oxide suspended in a 3D bulk polymeric network. This study lends itself to large-scale processing of rGO thin films and applications in high-speed optoelectronics and photonic switching ap- plications. ACKNOWLEDGMENTS This material is based upon work supported by the Office of the Under Secretary of Defense for Research and Engineering under award number FA9550-22-1-0276, and the DEVCOM Army Research Laboratory award number W56HZV-16-C-0147. Supplementary Materials: Details on sample char- acteristics, data modeling methods, and further absorp- tion and PL spectral data show similar graphene-like propertis out to the mid-IR regions as far as 0.5 eV. Data Availability Statement:The data that sup- port the findings of this study are available from the cor- responding author upon reasonable request. F. Wang, and X. Zhang, Nature 474, 64 (2011). 16 G. Xin, Y. Meng, Y. Ma, D. Ho, N. Kim, S. M. Cho, and H. Chae, Materials Letters 74, 71 (2012). 17 I. Boukhoubza, M. Khenfouch, M. Achehboune, B. M. Mothudi, I. Zorkani, and A. Jorio, Journal of Alloys and Compounds 797, 1320 (2019). 18 Q. Zhang, H. Zheng, Z. Geng, S. Jiang, J. Ge, K. Fan, S. Duan, Y. Chen, X. Wang, and Y. Luo, Journal of the American Chemical Society 135, 12468 (2013). 19 J. Wu, L. Jia, Y. Zhang, Y. Qu, B. Jia, and D. J. Moss, Advanced Materials 33, 1 (2021). 20 O. Koza ́k, M. Sudolska ́, G. Pramanik, P. C ́ıgler, M.Otyepka,andR.Zboˇril,ChemistryofMaterials28, 4085 (2016). 21 M. A. Sk, A. Ananthanarayanan, L. Huang, K. H. Lim, and P. Chen, Journal of Materials Chemistry C 2, 6954 (2014). 22 R. Roy, R. Thapa, S. Chakrabarty, A. Jha, P. R. Midya, E. M. Kumar, and K. K. Chattopadhyay, Chemical Physics Letters 677, 80 (2017). 23 N. S. Suhaimin, M. F. R. Hanifah, M. Azhar, J. Jaafar, M. Aziz, A. F. Ismail, M. H. D. Othman, M. A. Rahman, F. Aziz, N. Yusof, and R. Mohamud, Materials Chemistry and Physics 278, 125629 (2022). 24 S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, and B. Yang, Nano Today 13, 10 (2017). 25 S. Kaniyankandy, S. N. Achary, S. Rawalekar, and H. N. Ghosh, Journal of Physical Chemistry C 115, 19110 (2011). 26 D. Sebastian, A. Pallikkara, H. Bhatt, H. N. Ghosh, and K. Ramakrishnan, The Journal of Physical Chemistry C 126, 11182 (2022), publisher: American Chemical Society. 27 J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, Nano Lett. 11, 4902 (2011). 10

PDF Image | Graphene Oxide Photoreduction Recovers Graphene

graphene-oxide-photoreduction-recovers-graphene-010

PDF Search Title:

Graphene Oxide Photoreduction Recovers Graphene

Original File Name Searched:

2301-13176.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP