logo

Progress in Graphene Synthesis

PDF Publication Title:

Progress in Graphene Synthesis ( progress-graphene-synthesis )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 013

109. M. Terrones et al., Nano Today, 5, 351 (2010). 110. Z. Chen, T. Huang, B. C. Jin, J. Hu, H. Lu, and S. Nutt, Carbon, 68, 167 (2014). 111. S. Kim, K. C. Kwon, J. Y. Park, H. W. Cho, I. Lee, S. Y. Kim, and J.-L. Lee, ACS Appl. Mater. Interfaces, 8, 12932 (2016). 112. P. Tian, L. Tang, K. S. Teng, and S. P. Lau, Mater. Today Chem., 10, 221 (2018). 113. N. Ansari, F. Nazari, and F. Illas, Phys. Chem. Chem. Phys., 16, 21473 (2014). 114. Z. Liang, Z. Xu, T. Yan, and F. Ding, Nanoscale, 6, 2082 (2014). 115. Q. Zheng and J.-K. Kim, Graphene for Transparent Conductors (Springer New York, New York, NY) p. 29 (2015), http://link.springer.com/10.1007/978-1-4939- 2769-2_2. 116. L. Liu, M. Qing, Y. Wang, and S. Chen, J. Mater. Sci. Technol., 31, 599 (2015). 117. S. Malola, H. Häkkinen, and P. Koskinen, Phys. Rev. B, 81, 165447-1 (2010), https://link.aps.org/doi/10.1103/PhysRevB.81.165447. 118. J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie, and A. Zettl, Nano Lett., 8, 3582 (2008). 119. G. Cantele, Y.-S. Lee, D. Ninno, and N. Marzari, Nano Lett., 9, 3425 (2009). 120. P. A. Denis and F. Iribarne, J. Phys. Chem. C, 117, 19048 (2013). 121. J. Y. Lim, N. M. Mubarak, E. C. Abdullah, S. Nizamuddin, M. Khalid, and I. Inamuddin, J. Ind. Eng. Chem., 66, 29 (2018). 122. M. Taghioskoui, Mater. Today, 12, 34 (2009). 123. M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, Int. Nano Lett., 6, 65 (2016). 124. R. Ciriminna, N. Zhang, M.-Q. Yang, F. Meneguzzo, Y.-J. Xu, and M. Pagliaro, Chem. Commun., 51, 7090 (2015). 125. W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Crit. Rev. Solid State Mater. Sci., 35, 52 (2010). 126. G. Supriyanto, N. K. Rukman, A. K. Nisa, M. Jannatin, B. Piere, M. Z. Fahmi, and H. S. Kusuma, Bio Resour., 13, 4832 (2018). 127. Z. Chen, L. Jin, W. Hao, W. Ren, and H.-M. Cheng, Mater. Today Nano, 5, 100027 (2019). 128. A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos, Small, 5, 1841 (2009). 129. A. T. Najafabadi and E. Gyenge, Carbon, 71, 58 (2014). 130. J. Liu et al., Nano Energy, 2, 377 (2013). 131. K. Chen and D. Xue, J. Colloid Interface Sci., 436, 41 (2014). 132. J. Liu, inGraphene-based Composites for Electrochemical Energy Storage (Springer Singapore, Singapore) p. 39 (2017), http://link.springer.com/10.1007/ 978-981-10-3388-9_2. 133. Y. Gong, Y. Ping, D. Li, C. Luo, X. Ruan, Q. Fu, and C. Pan, Appl. Surf. Sci., 397, 213 (2017). 134. K. Kakaei, Carbon, 51, 195 (2013). 135. A. Mir, D. K. Singh, and A. Shukla, Mater. Chem. Phys., 220, 87 (2018). 136. C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. N. Khlobystov, and L.-J. Li, ACS Nano, 5, 2332 (2011). 137. J.-W. Lee, M. Kim, W. Na, S. M. Hong, and C. M. Koo, Carbon, 91, 527 (2015). 138. J. M. Munuera, J. I. Paredes, S. Villar-Rodil, M. Ayán-Varela, A. Pagán, S. D. Aznar-Cervantes, J. L. Cenis, A. Martínez-Alonso, and J. M. D. Tascón, Carbon, 94, 729 (2015). 139. R. Singh and C. Charu Tripathi, Mater. Today Proc., 5, 973 (2018). 140. N. Behabtu et al., Nat. Nanotechnol., 5, 406 (2010). 141. W. Zhang, J. Cui, C. Tao, Y. Wu, Z. Li, L. Ma, Y. Wen, and G. Li, Angew. Chem., 121, 5978 (2009). 142. Z.-Y. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K.-C. Leou, F.-R. Chen, and C.-H. Tsai, Carbon, 48, 3169 (2010). 143. B. Qin, T. Zhang, H. Chen, and Y. Ma, Carbon, 102, 494 (2016). 144. S. Kim, Y. Song, J. Wright, and M. J. Heller, Carbon, 102, 339 (2016). 145. R. L. Calabro, D.-S. Yang, and D. Y. Kim, J. Colloid Interface Sci., 527, 132 (2018). 146. M. Kim, S. Osone, T. Kim, H. Higashi, and T. Seto, KONA Powder Part. J., 34, 80 (2017). 147. Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, and Y. Chen, Nano Res., 3, 661 (2010). 148. A. F. Betancur, N. Ornelas-Soto, A. M. Garay-Tapia, F. R. Pérez, Á. Salazar, and A. G. García, Mater. Chem. Phys., 218, 51 (2018). 149. K. Parvez, S. Yang, X. Feng, and K. Müllen, Synth. Met., 210, 123 (2015). 150. Y. Hernandez and J. N. Coleman, Nat. Nanotechnol., 3, 563 (2008). 151. M. Yi and Z. Shen, RSC Adv., 6, 72525 (2016). 152. Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, Nanomaterials, 8, 942 (2018). 153. P. Yu, S. E. Lowe, G. P. Simon, and Y. L. Zhong, Curr. Opin. Colloid Interface Sci., 20, 329 (2015). 154. A. Öztürk and M. Alanyalıoğlu, Superlattices Microstruct., 95, 56 (2016). 155. J. Liu et al., RSC Adv., 3, 11745 (2013). 156. K. Parvez, R. Li, S. R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, and K. Müllen, ACS Nano, 7, 3598 (2013). 157. S. Yang, M. R. Lohe, K. Müllen, and X. Feng, Adv. Mater., 28, 6213 (2016). 158. K. M. K Punith, S. Shanthini, and C. Srivastava, RSC Adv., 5, 53865 (2015). 159. A. Mir and A. Shukla, Appl. Surf. Sci., 443, 157 (2018). 160. H. Gürsu, M. Gençten, and Y. Şahin, Electrochim. Acta, 243, 239 (2017). 161. R. I. Jibrael and M. K. A. Mohammed, Opt.—Int. J. Light Electron Opt., 127, 6384 (2016). 162. K. Parvez, Z.-S. Wu, R. Li, X. Liu, R. Graf, X. Feng, and K. Müllen, J. Am. Chem. Soc., 136, 6083 (2014). 163. A. J. Cooper, N. R. Wilson, I. A. Kinloch, and R. A. W. Dryfe, Carbon, 66, 340 (2014). 164. W. Clower, N. Groden, and C. G. Wilson, Nano-Struct. Nano-Objects, 12, 77 (2017). 165. K. Muthoosamy and S. Manickam, Ultrason. Sonochem., 39, 478 (2017). 166. H. Asgar, K. M. Deen, U. Riaz, Z. U. Rahman, U. H. Shah, and W. Haider, Mater. Chem. Phys., 206, 7 (2018). 167. Y. Z. N. Htwe, W. S. Chow, Y. Suda, A. A. Thant, and M. Mariatti, Appl. Surf. Sci., 469, 951 (2019). 168. D. Van Thanh, P. P. Oanh, D. T. Huong, and P. H. Le, Ultrason. Sonochem., 34, 978 (2017). 169. R. Bakhshandeh and A. Shafiekhani, Mater. Chem. Phys., 212, 95 (2018). 170. A. B. López-Oyama, M. A. Domínguez-Crespo, A. M. Torres-Huerta, E. Onofre- Bustamante, R. Gámez-Corrales, N. Cayetano-Castro, and A. C. Ferrel-Álvarez, Data Brief, 21, 598 (2018). 171. H. Yang, H. Li, J. Zhai, L. Sun, and H. Yu, Ind. Eng. Chem. Res., 53, 17878 (2014). 172. S. Barcikowski, F. Devesa, and K. Moldenhauer, J. Nanoparticle Res.,, 11, 1883 (2009). 173. S. Barcikowski and G. Compagnini, Phys. Chem. Chem. Phys., 15, 3022 (2013). 174. M. DellʼAglio, R. Gaudiuso, O. De Pascale, and A. De Giacomo, Appl. Surf. Sci., 348, 4 (2015). 175. E. Cappelli, S. Orlando, M. Servidori, and C. Scilletta, Appl. Surf. Sci., 254, 1273 (2007). 176. F. Kazemizadeh and R. Malekfar, Phys. B Condens. Matter, 530, 236 (2018). 177. A. T. T. Koh, Y. M. Foong, and D. H. C. Chua, Diam. Relat. Mater., 25, 98 (2012). 178. G. K. Hemani, W. G. Vandenberghe, B. Brennan, Y. J. Chabal, A. V. Walker, R. M. Wallace, M. Quevedo-Lopez, and M. V. Fischetti, Appl. Phys. Lett., 103, 134102 (2013). 179. H. Abbasi, G. Rauter, R. Guzman, P. C. Cattin, and A. Zam, J. Biomed. Opt., 23, 071206 (2018). 180. E. M. Pechlivani, D. Papas, E. Mekeridis, A. Laskarakis, G. Nomikos, and S. Logothetidis, Mater. Today Proc., 4, 5074 (2017). 181. A. De Bonis, M. Curcio, A. Santagata, J. V. Rau, A. Galasso, and R. Teghil, Appl. Surf. Sci., 336, 67 (2015). 182. X. Li et al., Science, 324, 1312 (2009). 183. M. P. Lavin-Lopez, J. L. Valverde, S. Ordoñez-Lozoya, A. Paton-Carrero, and A. Romero, Mater. Chem. Phys., 222, 173 (2019). 184. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Carbon, 49, 4122 (2011). 185. R. Papon, C. Pierlot, S. Sharma, S. M. Shinde, G. Kalita, and M. Tanemura, Phys. Status Solidi b, 254, 1600629 (2017). 186. H. Liu and Y. Liu, Phys. Sci. Rev., 2, 1 (2017), https://degruyter.com/view/ journals/psr/2/4/article-20160107.xml. 187. K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, J. Phys. Chem. C, 113, 4257 (2009). 188. S. Kim, Y. Song, T. Takahashi, T. Oh, and M. J. Heller, Small, 11, 5041 (2015). 189. X. Wu, Y. Liu, H. Yang, and Z. Shi, RSC Advances, 6, 93119 (2016). ECS Journal of Solid State Science and Technology, 2020 9 093013

PDF Image | Progress in Graphene Synthesis

progress-graphene-synthesis-013

PDF Search Title:

Progress in Graphene Synthesis

Original File Name Searched:

Progress-in-Graphene-Synthesis-and-its-Application.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP