logo

Renewable Electrolysis using Graphene electrodes

PDF Publication Title:

Renewable Electrolysis using Graphene electrodes ( renewable-electrolysis-using-graphene-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 011

Debajyoti Bose et al /International Journal of ChemTech Research, 2017,10(4): 103-114. 113 With lower handle costs, it is relied upon to see more hydrogen fuel stations controlled by on location renewable vitality, and the way would likewise be cleared for huge scale energy to-gas frameworks driven by solar based, tidal or even wind energy. References 1. Millet, P., F. Andolfatto, and R. Durand. "Design and performance of a solid polymer electrolyte water electrolyzer." International Journal of Hydrogen Energy 21.2 (1996): 87-93. 2. Kreuter, W., and H. Hofmann. "Electrolysis: the important energy transformer in a world of sustainable energy." International Journal of Hydrogen Energy 23.8 (1998): 661-666. 3. Pregger, Thomas, et al. "Prospects of solar thermal hydrogen production processes." International journal of hydrogen energy 34.10 (2009): 4256-4267. 4. Ni, Meng, et al. "An overview of hydrogen production from biomass." Fuel processing technology 87.5 (2006): 461-472. 5. Walter, Michael G., et al. "Solar water splitting cells." Chemical reviews 110.11 (2010): 6446-6473. 6. Zhou, Juan, et al. "In situ controlled growth of ZnIn 2 S 4 nanosheets on reduced graphene oxide for enhanced photocatalytic hydrogen production performance." Chemical Communications 49.22 (2013): 2237-2239. 7. Reece, S. Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011). 8. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010). 9. Swierk, J. R. & Mallouk, T. E. Design and development of photoanodes for water-splitting dye- sensitized photoelectrochemical cells. Chem. Soc. Rev. 42, 2357–2387 (2013). 10. Swierk, J. R. et al. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Proc. Natl Acad. Sci. USA 112, 1681–1686 (2015). 11. Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 78, 661–669 (2005). 12. Wood, Graeme S., Roy O. Denoon, and Kenny Kwok. "Wind loads on industrial solar panel arrays and supporting roof structure." Wind and Structures 4.6 (2001): 481-494. 13. Kazmerski, Lawrence L. "Solar photovoltaics R&D at the tipping point: A 2005 technology overview." Journal of Electron Spectroscopy and Related Phenomena 150.2 (2006): 105-135. 14. Trasatti, S. Water Electrolysis: Who First? J. Electroanal. Chem. 1999, 476, 90-91. 15. Davenport, R. J.; Schubert, F. H. Space Water Electrolysis: Space Station through Advanced Missions; J. Power Sources 1991, 36, 235-250. 16. Grigoriev, S. A.; Porembsky, V. I.; Fateev, V. N. Pure Hydrogen Production by PEM Electrolysis for Hydrogen Energy; Int. J. Hydrogen Energy 2006, 31 (2), 171-175. 17. Grigoriev, S. A.; Millet, P.; Fateev, V. N. Evaluation of Carbon-Supported Pt and Pd Nanoparticles for the Hydrogen Evolution Reaction in PEM Water Electrolysers; J. Power Sources March2008, 177 (2), 281-285. 18. Fateev, V. N.; Porembsky, V. I.; Samoilov, D. I. Electrochemical Method for Deuteroxide and Hydrogen Isotopes Producing in the Book “Isotopes”; Fizmatlit: Moscow; 2005, 277e289. 19. Millet, P.; Andolfatto, F.; Durand, R. Design and Performance of a Solid Polymer Electrolyte Water Electrolyzer; Int. J. Hydrogen Energy February 1996, 21 (2), 87-93. 20. Yamaguchi, M.; Horiguchi, M.; Nakanori, T. Development of Large-Scale Water Electrolyzer Using Solid Polymer Electrolyte in WE-NET. Proceedings of the 13th World Hydrogen Energy Conference, Beijing, China, June 12e15, 2000, Vol. 1, pp. 274-281. 21. Millet, P.; Ngameni, R.; Grigoriev, S. A.; Mbemba, N.; Brisset, F.;Ranjbari, A.; Etie ́vant, C. PEM Water Electrolyzers: from Electrocatalysis to Stack Development; Int. J. Hydrogen Energy2010, 35, 5043-5052. 22. Fateev, V. N.; Archakov, O. V.; Lyutikova, E. K.; Kulikova, L. N.; Porembsky, V. I. Water Electrolysis in Systems with a Solid Polymer Electrolyte; Electrochemistry 1993, 551e557; T. 29. P. 551. No 4. 23. Dinh Nguyen, M-T.; Ranjbari, A.; Catala, L.; Brisset, F.; Millet, P.; Aukauloo, A. Implementing Molecular Catalysts for Hydrogen Production in Proton Exchange Membrane Water Electrolysers; Coord. Chem. Rev. 2012, 256, 2435-2444.

PDF Image | Renewable Electrolysis using Graphene electrodes

renewable-electrolysis-using-graphene-electrodes-011

PDF Search Title:

Renewable Electrolysis using Graphene electrodes

Original File Name Searched:

V10N4CT.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP