Synthesis of graphene Potential carbon precursors

PDF Publication Title:

Synthesis of graphene Potential carbon precursors ( synthesis-graphene-potential-carbon-precursors )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 028

Synthesis of graphene: Potential carbon precursors and approaches  1311 [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] Bandi S, Ravuri S, Peshwe DR, Srivastav AK. Graphene from discharged dry cell battery electrodes. J Hazard Mater. 2019;366:358–69. Adetayo A, Runsewe D. Synthesis and fabrication of gra- phene and graphene oxide: A review. Open J Compos Mater. 2019;9(02):207. Naghib SM, Behzad F, Rahmanian M, Zare Y, Rhee KY. A highly sensitive biosensor based on methacrylated gra- phene oxide-grafted polyaniline for ascorbic acid determi- nation. Nanotechnol Rev. 2020;9(1):760–7. Seger B, Kamat PV. Electrocatalytically active graphene- platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C. 2009;113(19):7990–5. Dideikin AT, Vul AY. Graphene oxide and derivatives: The place in graphene family. Front Phys. 2019;6:149. Seo DH, Yick S, Pineda S, Su D, Wang G, Han ZJ, et al. Single- step, plasma-enabled reforming of natural precursors into vertical graphene electrodes with high areal capacitance. ACS Sustain Chem Eng. 2015;3(3):544–51. Seo DH, Yick S, Pineda S, Su D, Wang G, Han ZJ, et al. Single- step, plasma-enabled reforming of natural precursors into vertical graphene electrodes with high areal capacitance. ACS Sustain Chem Eng. 2015;3(3):544–51. Seo DH, Rider AE, Han ZJ, Kumar S, Ostrikov K. Plasma break‐down and Re‐build: Same functional vertical gra- phenes from diverse natural precursors. Adv Mater. 2013;25(39):5638–42. Wu A, Li X, Yang J, Du C, Shen W, Yan J. Upcycling waste lard oil into vertical graphene sheets by inductively coupled plasma assisted chemical vapor deposition. Nanomaterials. 2017;7(10):318. Filip O, Janda K, Kristoufek L, Zilberman D. Food versus fuel: An updated and expanded evidence. Energy Econ. 2019;82:152–66. Ravani F, Papagelis K, Dracopoulos V, Parthenios J, Dassios KG, Siokou A, et al. Graphene production by disso- ciation of camphor molecules on nickel substrate. Thin Solid Films. 2013;527:31–7. Kavitha K, Urade AR, Kaur G, Lahiri I. Low-temperature che- mical vapor deposition growth of graphene layers on copper substrate using camphor precursor. J Nanosci Nanotechnol. 2020;20(12):7698–704. Chaliyawala HA, Rajaram N, Patel R, Ray A, Mukhopadhyay I. Controlled island formation of large-area graphene sheets by atmospheric chemical vapor deposition: Role of natural camphor. ACS Omega. 2019;4(5):8758–66. Kraus J, Böbel L, Zwaschka G, Günther S. Understanding the reaction kinetics to optimize graphene growth on Cu by chemical vapor deposition. Annalen der Phys. 2017;529(11):1700029. Somani PR, Somani SP, Umeno M. Planer nano-graphenes from camphor by CVD. Chem Phys Lett. 2006;430(1–3):56–9. Kalita G, Masahiro M, Uchida H, Wakita K, Umeno M. Few layers of graphene as transparent electrode from botanical derivative camphor. Mater Lett. 2010;64(20):2180–3. Kalita G, Wakita K, Umeno M. Monolayer graphene from a green solid precursor. Phys E Low Dimens Syst Nanostruct. 2011;43(8):1490–3. Jacob MV, Rawat RS, Ouyang B, Bazaka K, Kumar DS, Taguchi D, et al. Catalyst-free plasma enhanced growth of [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] graphene from sustainable sources. Nano Lett. 2015;15(9):5702–8. Mohan A, Manoj B. Extraction of graphene nanostructures from Colocasia esculenta and Nelumbo nucifera leaves and surface functionalization with tin oxide: Evaluation of their antibacterial properties. Chem A Eur J. 2020;26(36):8105–14. Liu J, Rojas-Andrade MD, Chata G, Peng Y, Roseman G, Lu JE, et al. Photo-enhanced antibacterial activity of ZnO/graphene quantum dot nanocomposites. Nanoscale. 2018;10(1):158–66. Qu J, Luo C, Zhang Q, Cong Q, Yuan X. Easy synthesis of graphene sheets from alfalfa plants by treatment of nitric acid. Mater Sci Eng B. 2013;178(6):380–2. Roy P, Periasamy AP, Chuang C, Liou YR, Chen YF, Joly J, et al. Plant leaf-derived graphene quantum dots and applications for white LEDs. N J Chem. 2014;38(10):4946–51. Anooj ES, Praseetha PK. Synthesis and characterization of graphene quantum dots from nutmeg seeds and its biome- dical application. Int J Recent Technol Eng. 2019;7:144–51. Kumar R, Singh RK, Singh DP. Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs. Renew Sustain Energy Rev. 2016;58:976–1006. Kumar R, Singh RK, Kumar P, Dubey PK, Tiwari RS, Srivastava ON. Clean and efficient synthesis of graphene nanosheets and rectangular aligned-carbon nanotubes bundles using green botanical hydrocarbon precursor: Sesame oil. Sci Adv Mater. 2014;6(1):76–83. Heli H, Yadegari H, Jabbari A. Graphene nanosheets-poly (o-aminophenol) nanocomposite for supercapacitor appli- cations. Mater Chem Phys. 2012;134(1):21–5. Maarof S, Ali AA, Hashim AM. Synthesis of large-area single- layer graphene using refined cooking palm oil on copper substrate by spray injector-assisted CVD. Nanoscale Res Lett. 2019;14(1):143. Abd Rahman SF, Mahmood MR, Hashim AM. Growth of uni- form carbon thin film containing nanocrystalline graphene clusters from evaporated palm oil by thermal chemical vapor deposition. Japanese J Appl Phys. 2014;53(7):075101. Robaiah M, Mahmud MA, Salifairus MJ, Khusaimi Z, Azhan H, Abdullah S, et al. Synthesis and characterization of graphene from waste cooking palm oil at different deposition tem- peratures. AIP Conf Proc. 2019;2151(1):020026. Robaiah M, Rusop M, Abdullah S, Khusaimi Z, Azhan H, Laila MO, et al. Morphology and topography study of gra- phene synthesized from plant oil. AIP Conf Proc. 2018;1963(1):020045. Nasir S, Hussein MZ, Yusof NA, Zainal Z. Oil palm waste- based precursors as a renewable and economical carbon sources for the preparation of reduced graphene oxide from graphene oxide. Nanomaterials. 2017;7(7):182. Zhang B, Song J, Yang G, Han B. Large-scale production of high-quality graphene using glucose and ferric chloride. Chem Sci. 2014;5(12):4656–60. Wang X, Zhang Y, Zhi C, Wang X, Tang D, Xu Y, et al. Three- dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat Commun. 2013;4(1):1–8. Xu Z, Li Z, Holt CM, Tan X, Wang H, Amirkhiz BS, et al. Electrochemical supercapacitor electrodes from sponge-like

PDF Image | Synthesis of graphene Potential carbon precursors

synthesis-graphene-potential-carbon-precursors-028

PDF Search Title:

Synthesis of graphene Potential carbon precursors

Original File Name Searched:

10-1515-ntrev-2020-0100.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com (Standard Web Page)