logo

Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes

PDF Publication Title:

Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes ( water-in-salt-eutectic-solvent-based-liquid-electrolytes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 016

Nanomaterials 2023, 13, 1257 16 of 20 References Data Availability Statement: No data are available. Conflicts of Interest: The authors declare no conflict of interest. 1. Liu, Y.; Xu, X.; Shao, Z.; Jiang, S.P. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 2020, 26, 1–22. [CrossRef] 2. Koçak, B.; Fernandez, A.I.; Paksoy, H. Review on sensible thermal energy storage for industrial solar applications and sustainabil- ity aspects. Sol. Energy 2020, 209, 135–169. [CrossRef] 3. Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Adv. Sci. 2016, 3, 1500286. [CrossRef] [PubMed] 4. Saleem, A.M.; Desmaris, V.; Enoksson, P. Performance Enhancement of Carbon Nanomaterials for Supercapacitors. J. Nanomater. 2016, 2016, 1537269. [CrossRef] 5. Meng, C.; Gall, O.Z.; Irazoqui, P.P. A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed. Microdevices 2013, 15, 973–983. [CrossRef] 6. dos Santos, R.B.; Rivelino, R.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Exploring 2D structures of indium oxide of different stoichiometry. CrystEngComm 2021, 23, 6661–6667. [CrossRef] 7. Medeiros, P.V.C.; Gueorguiev, G.K.; Stafström, S. Bonding, charge rearrangement and interface dipoles of benzene, graphene, and PAH molecules on Au(111) and Cu(111). Carbon N. Y. 2015, 81, 620–628. [CrossRef] 8. Dubey, R.; Guruviah, V. Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 2019, 25, 1419–1445. [CrossRef] 9. Lakshmi, K.C.S.; Vedhanarayanan, B.; Cheng, H.Y.; Ji, X.; Shen, H.H.; Lin, T.W. Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures. J. Colloid Interface Sci. 2022, 619, 123–131. [CrossRef] 10. Vinodh, R.; Sasikumar, Y.; Kim, H.J.; Atchudan, R.; Yi, M. Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review. J. Ind. Eng. Chem. 2021, 104, 155–171. [CrossRef] 11. Vinodh, R.; Babu, R.S.; Sambasivam, S.; Muralee Gopi, C.V.V.; Alzahmi, S.; Kim, H.J.; de Barros, A.L.F.; Obaidat, I.M. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. Nanomaterials 2022, 12, 1511. [CrossRef] [PubMed] 12. Winter, M.; Brodd, R.J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245–4269. [CrossRef] 13. Qi, D.; Liu, Y.; Liu, Z.; Zhang, L.; Chen, X. Design of Architectures and Materials in In-Plane Micro-supercapacitors: Current Status and Future Challenges. Adv. Mater. 2017, 29, 1602802. [CrossRef] [PubMed] 14. Lim, J.M.; Jang, Y.S.; Van, T. Nguyen, H.; Kim, J.S.; Yoon, Y.; Park, B.J.; Seo, D.H.; Lee, K.K.; Han, Z.; Ostrikov, K.; et al. Advances in High-Voltage Supercapacitors for Energy Storage Systems: Materials and Electrolyte Tailoring to Implementation. Nanoscale Adv. 2023, 5, 615–626. [CrossRef] 15. González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [CrossRef] 16. Lu, X.; Jiménez-Riobóo, R.J.; Leech, D.; Gutiérrez, M.C.; Ferrer, M.L.; Del Monte, F. Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 ◦C, from-35 to +65 ◦C. ACS Appl. Mater. Interfaces 2020, 12, 29181–29193. [CrossRef] [PubMed] 17. Huang, M.K.; Anuratha, K.S.; Xiao, Y.; Chen, Y.P.; Lin, J.Y. Co-solvent modified methylsulfonylmethane-based hybrid deep eutectic solvent electrolytes for high-voltage symmetric supercapacitors. Electrochim. Acta 2022, 424, 140612. [CrossRef] 18. Jayalakshmi, M.; Balasubramanian, K. Simple capacitors to supercapacitors—An overview. Int. J. Electrochem. Sci. 2008, 3, 1196–1217. 19. Wang, Y.; Song, Y.; Xia, Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950. [CrossRef] 20. Ratajczak, P.; Suss, M.E.; Kaasik, F.; Béguin, F. Carbon electrodes for capacitive technologies. Energy Storage Mater. 2019, 16, 126–145. [CrossRef] 21. Fleischmann, S.; Mitchell, J.B.; Wang, R.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [CrossRef] [PubMed] 22. Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [CrossRef] [PubMed] 23. Ma, Y.; Chang, H.; Zhang, M.; Chen, Y. Graphene-based materials for lithium-ion hybrid supercapacitors. Adv. Mater. 2015, 27, 5296–5308. [CrossRef] 24. Chen, P.; Xiao, T.Y.; Qian, Y.H.; Li, S.S.; Yu, S.H. A nitrogen-doped graphene/carbon nanotube nanocomposite with synergistically enhanced electrochemical activity. Adv. Mater. 2013, 25, 3192–3196. [CrossRef] 25. Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 2012, 24, 5610–5616. [CrossRef]

PDF Image | Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes

water-in-salt-eutectic-solvent-based-liquid-electrolytes-016

PDF Search Title:

Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes

Original File Name Searched:

nanomaterials-13-01257.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP