logo

Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes

PDF Publication Title:

Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes ( water-in-salt-eutectic-solvent-based-liquid-electrolytes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Nanomaterials 2023, 13, 1257 19 of 20 79. Thareja, S.; Kumar, A. “Water-In-Salt” Electrolyte-Based High-Voltage (2.7 V) Sustainable Symmetric Supercapacitor with Superb Electrochemical Performance—An Analysis of the Role of Electrolytic Ions in Extending the Cell Voltage. ACS Sustain. Chem. Eng. 2021, 9, 2338–2347. [CrossRef] 80. Seetha Lakshmi, K.C.; Ji, X.; Shao, L.D.; Vedhanarayanan, B.; Lin, T.W. Tailor-made organic polymers towards high voltage aqueous ammonium/potassium-ion asymmetric supercapacitors. Appl. Surf. Sci. 2022, 577, 151918. [CrossRef] 81. Meng, C.; Zhou, F.; Liu, H.; Zhu, Y.; Fu, Q.; Wu, Z.S. Water-in-Salt Ambipolar Redox Electrolyte Extraordinarily Boosting High Pseudocapacitive Performance of Micro-supercapacitors. ACS Energy Lett. 2022, 7, 1706–1711. [CrossRef] 82. Dong, S.; Wang, Y.; Chen, C.; Shen, L.; Zhang, X. Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors. Nano-Micro Lett. 2020, 12, 168. [CrossRef] [PubMed] 83. Navarro-Suárez, A.M.; Johansson, P. Perspective—Semi-Solid Electrolytes Based on Deep Eutectic Solvents: Opportunities and Future Directions. J. Electrochem. Soc. 2020, 167, 070511. [CrossRef] 84. Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep eutectic solvents for the production and application of new materials. Appl. Mater. Today 2018, 10, 30–50. [CrossRef] 85. Ünlü, A.E.; Arıkaya, A.; Takaç, S. Use of deep eutectic solvents as catalyst: A mini-review. Green Process. Synth. 2019, 8, 355–372. [CrossRef] 86. Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [CrossRef] 87. Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [CrossRef] 88. Di Pietro, M.E.; Mele, A. Deep eutectics and analogues as electrolytes in batteries. J. Mol. Liq. 2021, 338, 116597. [CrossRef] 89. Zhang, C.; Zhang, L.; Yu, G. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage. Acc. Chem. Res. 2020, 53, 1648–1659. [CrossRef] 90. Lien, C.W.; Vedhanarayanan, B.; Chen, J.H.; Lin, J.Y.; Tsai, H.H.; Shao, L.D.; Lin, T.W. Optimization of acetonitrile/water content in hybrid deep eutectic solvent for graphene/MoS2 hydrogel-based supercapacitors. Chem. Eng. J. 2021, 405, 126706. [CrossRef] 91. Zhong, M.; Tang, Q.F.; Qiu, Z.G.; Wang, W.P.; Chen, X.Y.; Zhang, Z.J. A novel electrolyte of ternary deep eutectic solvent for wide temperature region supercapacitor with superior performance. J. Energy Storage 2020, 32, 101904. [CrossRef] 92. Tran, K.T.; Truong, T.T.T.; Nguyen, H.V.; Nguyen, Q.D.; Phung, Q.; Le, P.M.L.; Tran, M.V. Hybrid Deep Eutectic Solvent of LiTFSI-Ethylene Glycol Organic Electrolyte for Activated Carbon-Based Supercapacitors. J. Chem. 2021, 2021, 9940750. [CrossRef] 93. Forouzandeh, P.; Pillai, S.C. Two-dimensional (2D) electrode materials for supercapacitors. Mater. Today Proc. 2021, 41, 498–505. [CrossRef] 94. Tatlisu, A.; Huang, Z.; Chen, R. High-Voltage and Low-Temperature Aqueous Supercapacitor Enabled by “Water-in-Imidazolium Chloride” Electrolytes. ChemSusChem 2018, 11, 3899–3904. [CrossRef] [PubMed] 95. Khademi, B.; Nateghi, M.R.; Shayesteh, M.R.; Nasirizadeh, N. High voltage binder free hybrid supercapacitor based on reduced graphene oxide/graphene oxide electrodes and “water in salt” electrolyte. J. Energy Storage 2021, 43, 103164. [CrossRef] 96. Choudhury, B.J.; Ingtipi, K.; Moholkar, V.S. Improved energy density of reduced graphene oxide based aqueous symmetric supercapacitors in redox-active and “water-in-salt” electrolytes. J. Energy Storage 2022, 52, 105006. [CrossRef] 97. Zhang, M.; Li, Y.; Shen, Z. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with all-pseudocapacitive metal-oxide electrodes. J. Power Sources 2019, 414, 479–485. [CrossRef] 98. Zhang, M.; Makino, S.; Mochizuki, D.; Sugimoto, W. High-performance hybrid supercapacitors enabled by protected lithium negative electrode and “water-in-salt” electrolyte. J. Power Sources 2018, 396, 498–505. [CrossRef] 99. Zhu, Y.; Zheng, S.; Lu, P.; Ma, J.; Das, P.; Su, F.; Cheng, H.M.; Wu, Z.S. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Rev. 2022, 9, nwac024. [CrossRef] 100. Avireddy, H.; Byles, B.W.; Pinto, D.; Delgado Galindo, J.M.; Biendicho, J.J.; Wang, X.; Flox, C.; Crosnier, O.; Brousse, T.; Pomerantseva, E.; et al. Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge. Nano Energy 2019, 64, 103961. [CrossRef] 101. Wang,X.;Mathis,T.S.;Sun,Y.;Tsai,W.Y.;Shpigel,N.;Shao,H.;Zhang,D.;Hantanasirisakul,K.;Malchik,F.;Balke,N.;etal. Titanium Carbide MXene Shows an Electrochemical Anomaly in Water-in-Salt Electrolytes. ACS Nano 2021, 15, 15274–15284. [CrossRef] 102. Tsai,H.H.;Lin,T.J.;Vedhanarayanan,B.;Tsai,C.C.;Chen,T.Y.;Ji,X.;Lin,T.W.A1.9-Vall-organicbattery-supercapacitorhybrid device with high rate capability and wide temperature tolerance in a metal-free water-in-salt electrolyte. J. Colloid Interface Sci. 2022, 612, 76–87. [CrossRef] 103. Tsai,Y.R.;Vedhanarayanan,B.;Chen,T.Y.;Lin,Y.C.;Lin,J.Y.;Ji,X.;Lin,T.W.Atailor-madedeepeutecticsolventfor2.2Vwide temperature-tolerant supercapacitors via optimization of N,N-dimethylformamide/water co-solvents. J. Power Sources 2022, 521, 230954. [CrossRef] 104. Qin, J.; Wang, S.; Zhou, F.; Das, P.; Zheng, S.; Sun, C.; Bao, X.; Wu, Z.S. 2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. Energy Storage Mater. 2019, 18, 397–404. [CrossRef] 105. Sahoo, R.; Lee, T.H.; Pham, D.T.; Luu, T.H.T.; Lee, Y.H. Fast-Charging High-Energy Battery-Supercapacitor Hybrid: Anodic Reduced Graphene Oxide-Vanadium(IV) Oxide Sheet-on-Sheet Heterostructure. ACS Nano 2019, 13, 10776–10786. [CrossRef]

PDF Image | Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes

water-in-salt-eutectic-solvent-based-liquid-electrolytes-019

PDF Search Title:

Water-in-Salt Eutectic Solvent-Based Liquid Electrolytes

Original File Name Searched:

nanomaterials-13-01257.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@infinityturbine.com | RSS | AMP