PDF Publication Title:
Text from PDF Page: 121
Flow Battery, J. Electrochem. Soc. 163 (2016) A338–A344. https://doi.org/10.1149/2.0971602jes. [15] M. Skyllas-Kazacos, M. Kazacos, State of charge monitoring methods for vanadium redox flow battery control, J. Power Sources. 196 (2011) 8822–8827. https://doi.org/10.1016/j.jpowsour.2011.06.080. [16] M.L. Perry, J.D. Saraidaridis, R.M. Darling, Crossover Mitigation Strategies for Redox- Flow Batteries, Curr. Opin. Electrochem. 21 (2020) 311–318. https://doi.org/10.1016/j.coelec.2020.03.024. [17] C. Minke, T. Turek, Economics of vanadium redox flow battery membranes, J. Power Sources. 286 (2015) 247–257. https://doi.org/10.1016/j.jpowsour.2015.03.144. [18] G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int. J. Energy Res. 36 (2012) 1105–1120. https://doi.org/10.1002/er.1863. [19] M. Zheng, J. Sun, C. Meinrenken, T. Wang, Pathways towards enhanced techno-economic performance of flow battery systems in energy system applications, J. Electrochem. Energy Convers. Storage. 16 (2019) 021001-1-021001–11. https://doi.org/10.1115/1.4040921. [20] M. Zhang, M. Moore, J.S. Watson, T.A. Zawodzinski, R.M. Counce, Capital Cost Sensitivity Analysis of an All-Vanadium Redox-Flow Battery, J. Electrochem. Soc. 159 (2012) A1183–A1188. https://doi.org/10.1149/2.041208jes. [21] J. Noack, L. Wietschel, N. Roznyatovskaya, K. Pinkwart, J. Tübke, Techno-economic modeling and analysis of redox flow battery systems, Energies. 9 (2016). https://doi.org/10.3390/en9080627. [22] T. Lüth, S. König, M. Suriyah, T. Leibfried, Passive components limit the cost reduction of conventionally designed vanadium redox flow batteries, Energy Procedia. 155 (2018) 379– 389. https://doi.org/10.1016/j.egypro.2018.11.040. [23] A. Crawford, V. Viswanathan, D. Stephenson, W. Wang, E. Thomsen, D. Reed, B. Li, P. Balducci, M. Kintner-Meyer, V. Sprenkle, Comparative analysis for various redox flow batteries chemistries using a cost performance model, J. Power Sources. 293 (2015) 388– 399. https://doi.org/10.1016/j.jpowsour.2015.05.066. [24] M.-A. Goulet, M.J. Aziz, Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods, J. Electrochem. Soc. 165 (2018) A1466–A1477. https://doi.org/10.1149/2.0891807jes. [25] Y.K. Zeng, T.S. Zhao, L. An, X.L. Zhou, L. Wei, A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage, J. Power Sources. 300 (2015) 438–443. https://doi.org/10.1016/j.jpowsour.2015.09.100. [26] M.L. Perry, A.Z. Weber, Advanced Redox-Flow Batteries: A Perspective, J. Electrochem. Soc. 163 (2016) A5064–A5067. https://doi.org/10.1149/2.0101601jes. [27] D.G. Kwabi, Y. Ji, M.J. Aziz, Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review, Chem. Rev. 120 (2020) 6467–6489. https://doi.org/10.1021/acs.chemrev.9b00599. 121PDF Image | Bringing Redox Flow Batteries to the Grid
PDF Search Title:
Bringing Redox Flow Batteries to the GridOriginal File Name Searched:
Rodby-krodby-phd-chemE-2022-thesis.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)