PDF Publication Title:
Text from PDF Page: 124
2019). [55] Lazard, Lazard’s Levelized Cost of Storage Analysis - Version 4.0, 2018. [56] C.S. Lai, M.D. McCulloch, Levelized cost of electricity for solar photovoltaic and electrical energy storage, Appl. Energy. 190 (2017) 191–203. https://doi.org/10.1016/j.apenergy.2016.12.153. [57] National Renewable Energy Laboratory, Simple Levelied Cost of Energy (LCOE) Calculator Documentation, (n.d.). https://www.nrel.gov/analysis/tech-lcoe- documentation.html (accessed October 9, 2019). [58] O. Schmidt, S. Melchior, A. Hawkes, I. Staffell, Projecting the Future Levelized Cost of Electricity Storage Technologies, Joule. 3 (2019) 81–100. https://doi.org/10.1016/j.joule.2018.12.008. [59] Lazard, Lazard’s Levelized Cost of Storage Analysis - Version 3.0, 2017. [60] K.E. Rodby, T.J. Carney, Y. Ashraf Gandomi, J.L. Barton, R.M. Darling, F.R. Brushett, Assessing the levelized cost of vanadium redox flow batteries with capacity fade and rebalancing., J. Power Sources. 460 (2020) 227958. https://doi.org/10.1016/j.jpowsour.2020.227958. [61] R.M. Darling, K.G. Gallagher, J.A. Kowalski, H. Seungbum, F.R. Brushett, Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries, Energy Environ. Sci. 7 (2014) 3459–3477. https://doi.org/10.1039/C4EE02158D. [62] U.S. Energy Information Administration, Electric Power Monthly: with data for July 2018, 2018. [63] US Department of Labor, Consumer Price Index - August 2018, 2018. [64] Chemicals: Oxalic Acid, Alibaba. (2019). [65] S.N. Bizzari, M. Blagoev, Oxalic Acid - Chemical Economics Handbook, 2010. [66] S. Kumar, S. Jayanti, High Energy Efficiency With Low-Pressure Drop Configuration for an All-Vanadium Redox Flow Battery, J. Electrochem. Energy Convers. Storage. 13 (2017) 041005. https://doi.org/10.1115/1.4035847. [67] J. Xi, B. Jiang, L. Yu, L. Liu, Membrane evaluation for vanadium flow batteries in a temperature range of −20–50 °C, J. Memb. Sci. 522 (2017) 45–55. https://doi.org/10.1016/j.memsci.2016.09.012. [68] A. Rohatgi, WebPlotDigitizer v4.1, (2018). https://automeris.io/WebPlotDigitizer. [69] S.W. Choi, T.H. Kim, S.W. Jo, J.Y. Lee, S.H. Cha, Y.T. Hong, Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s, Electrochim. Acta. 259 (2018) 427–439. https://doi.org/10.1016/j.electacta.2017.10.121. [70] S. Kim, T.B. Tighe, B. Schwenzer, J. Yan, J. Zhang, J. Liu, Z. Yang, M.A. Hickner, Chemical and mechanical degradation of sulfonated poly(sulfone) membranes in vanadium redox flow batteries, J. Appl. Electrochem. 41 (2011) 1201–1213. https://doi.org/10.1007/s10800-011-0313-0. 124PDF Image | Bringing Redox Flow Batteries to the Grid
PDF Search Title:
Bringing Redox Flow Batteries to the GridOriginal File Name Searched:
Rodby-krodby-phd-chemE-2022-thesis.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)