PDF Publication Title:
Text from PDF Page: 129
[125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] T.D. Gregory, M.L. Perry, P. Albertus, Cost and price projections of synthetic active materials for redox flow batteries, J. Power Sources. 499 (2021) 229965. https://doi.org/10.1016/j.jpowsour.2021.229965. J. Mellentine, Performance Characterization and Cost Assessment of an Iron Hybrid Flow Battery, Univ. Icel. (2011) 139. http://skemman.is/en/stream/get/1946/7698/20100/1/RES_Mellentine_Thesis_Paper_FIN AL.pdf. R. Darling, K. Gallagher, W. Xie, L. Su, F. Brushett, Transport Property Requirements for Flow Battery Separators, J. Electrochem. Soc. 163 (2016) A5029–A5040. https://doi.org/10.1149/2.0051601jes. KEMIWATT, (n.d.). https://kemiwatt.com/. Green Energy Storage, (n.d.). http://www.greenenergystorage.eu/en/battery/. CMBlu, (n.d.). https://www.cmblu.de/. XL Batteries, (n.d.). https://www.xl-batteries.com/. JenaBatteries, (n.d.). https://jenabatteries.de/en/. B. Huskinson, M.P. Marshak, C. Suh, S. Er, M.R. Gerhardt, C.J. Galvin, X. Chen, A. Aspuru-Guzik, R.G. Gordon, M.J. Aziz, A metal-free organic-inorganic aqueous flow battery, Nature. 505 (2014) 195–198. https://doi.org/10.1038/nature12909. Y. Ji, M. Goulet, D.A. Pollack, D.G. Kwabi, S. Jin, D. De Porcellinis, E.F. Kerr, R.G. Gordon, M.J. Aziz, A Phosphonate-Functionalized Quinone Redox Flow Battery at Near- Neutral pH with Record Capacity Retention Rate, Adv. Energy Mater. 9 (2019). https://doi.org/10.1002/aenm.201900039. D.G. Kwabi, K. Lin, Y. Ji, E.F. Kerr, M. Goulet, D. De Porcellinis, D.P. Tabor, D.A. Pollack, R.G. Gordon, Alkaline Quinone Flow Battery with Long Lifetime at pH 12, Joule. 2 (2018) 1907–1908. https://doi.org/10.1016/j.joule.2018.08.013. C.S. Sevov, R.E.M. Brooner, E. Chenard, R.S. Assary, J.S. Moore, J. Rodriguez-Lopez, M.S. Sanford, Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries, J. Am. Chem. Soc. 137 (2015) 14465–14472. https://doi.org/10.1021/jacs.5b09572. Z. Yang, L. Tong, D.P. Tabor, E.S. Beh, M. Goulet, D. De Porcellinis, A. Aspuru-guzik, R.G. Gordon, M.J. Aziz, Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy, Adv. Energy Mater. 8 (2018). https://doi.org/10.1002/aenm.201702056. J.D. Robert, M.C. Caserio, Separation, Purification, & Identification of Organic Compounds, in: Basic Princ. Org. Chem., W.A. Benjamin, Inc., 1977. Y. Ren, X. Mao, T.A. Hatton, An Asymmetric Electrochemical System with Complementary Tunability in Hydrophobicity for Selective Separations of Organics, (2019). https://doi.org/10.1021/acscentsci.9b00379. A.M. Grumezescu, ed., Water Purification, Academic Press, 2017. Y.R. Dong, H. Kaku, K. Hanafusa, K. Moriuchi, T. Shigematsu, A Novel 129PDF Image | Bringing Redox Flow Batteries to the Grid
PDF Search Title:
Bringing Redox Flow Batteries to the GridOriginal File Name Searched:
Rodby-krodby-phd-chemE-2022-thesis.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)