logo

Broad temperature adaptability vanadium redox flow battery

PDF Publication Title:

Broad temperature adaptability vanadium redox flow battery ( broad-temperature-adaptability-vanadium-redox-flow-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

534 S. Xiao et al. / Electrochimica Acta 187 (2016) 525–534 [17] Y. Li, H. Zhang, X. Li, H. Zhang, W. Wei, Porous poly (ether sulfone) membranes with tunable morphology: Fabrication and their application for vanadium flow battery, J. Power Sources 233 (2013) 202–208. [18] W. Dai, L. Yu, Z. Li, J. Yan, J. Le Liu, X.Qiu Xi, Sulfonated Poly(ether ether ketone)/ graphene composite membrane for vanadium redox flow battery, Electrochim. Acta 132 (2014) 200–207. [19] K.J. Kim, M.S. Park, Y.J. Kim, J.H. Kim, S.X. Dou, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, J. Mater. Chem. A 3 (2015) 16913–16933. [20] H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, L. Chen, CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries, RSC Adv. 4 (2014) 61912–61918. [21] W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu, X. Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochim. Acta 89 (2013) 429–435. [22] M. Skyllas-Kazacos, C. Menictas, M. Kazacos, Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell, J. Electrochem. Soc. 143 (1996) 86–88. [23] S. Peng, N. Wang, C. Cao, Y. Lei, X. Liang, S. Liu, Y. Liu, Stability of positive electrolyte containing trishydroxymethyl aminomethane additive for vanadium redox flow battery, Int. J. Electrochem. Sci. 7 (2012) 4388–4396. [24] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang, A stable vanadium redox-flow battery with high energy density for large-scale energy storage, Adv. Energy Mater. 1 (2011) 394–400. [25] F. Rahman, M. Skyllas-Kazacos, Vanadium redox battery: positive half-cell electrolyte studies, J. Power Sources 189 (2009) 1212–1219. [26] M. Vijayakumar, L. Li, G. Graff, J. Liu, H. Zhang, Z. Yang, J. Hu, Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries, J. Power Sources 196 (2011) 3669–3672. [27] F. Rahman, M. Skyllas-Kazacos, Solubility of vanadyl sulfate in concentrated sulfuric acid solutions, J. Power Sources 72 (1998) 105–110. [28] J. Zhao, Z. Wu, J. Xi, X. Qiu, Solubility rules of negative electrolyte V2(SO4)3 of vanadium redox flow battery, J. Inorg. Mater. 27 (2012) 469–474. [29] M. Skyllas-Kazacos, C. Peng, M. Cheng, Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery, Electrochem. Solid-State Lett. 2 (1999) 121–122. [30] Z. He, L. Chen, Y. He, C. Chen, Y. Jiang, Z. He, S. Liu, Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries, Ionics 19 (2013) 1915–1920. [31] X. Wu, S. Liu, N. Wang, S. Peng, Z. He, Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery, Electrochim. Acta 78 (2012) 475–482. [32] J. Zhang, L. Li, Z. Nie, B. Chen, M. Vijayakumar, S. Kim, W. Wang, B. Schwenzer, J. Liu, Z. Yang, Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries, J. Appl. Electrochem. 41 (2011) 1215–1221. [33] S. Li, K. Huang, S. Liu, D. Fang, X. Wu, D. Lu, T. Wu, Effect of organic additives on positive electrolyte for vanadium redox battery, Electrochim. Acta 56 (2011) 5483–5487. [34] F. Chang, C. Hu, X. Liu, L. Liu, J. Zhang, Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery, Electrochim. Acta 60 (2012) 334–338. [35] S. Kim, M. Vijayakumar, W. Wang, J. Zhang, B. Chen, Z. Nie, F. Chen, J. Hu, L. Li, Z. Yang, Chloride supporting electrolytes for all-vanadium redox flow batteries, Phys. Chem. Chem. Phys. 13 (2011) 18186–18193. [36] Z. Li, W. Dai, L. Yu, J. Xi, X. Qiu, L. Chen, Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application, ACS Appl. Mater. Interface 6 (2014) 18885–18893. [37] W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, X. Qiu, SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery, J. Mater. Chem. A 2 (2014) 12423–12432. [38] M. Skyllas-Kazacos, J.F. McCann, Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage, in: C. Menictas, M. Skyllas-Kazacos, T. M. Lim (Eds.), Advances in batteries for medium- and large-scale energy storage, Woodhead Publishing, 2015. [39] M. Kazacos, M. Cheng, M. Skyllas-Kazacos, Vanadium redox cell electrolyte optimization studies, J. Appl. Electochem. 20 (1990) 463–467. [40] A. Mousa, M. Skyllas-Kazacos, Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte, ChemElectroChem. [41] S. Corcuera, M. Skyllas-Kazacos, State-of-charge monitoring and electrolyte rebalancing methods for the vanadium redox flow battery, Europen. Chem. Bull. 1 (12) (2012) 511–519. [42] M. Skyllas-Kazacos, M. Kazacos, State of charge monitoring methods for vanadium redox flow battery control, J. Power Sources 196 (2011) 8822–8827. [43] S. Suarez, M. Sahin, Y. Adam, L. Moussignac, D. Cuffari, D. Paterno, A variable temperature study of the tansport properties of aqueous solutions of VOSO4 and NH4VO3 in 2M H2SO4, J. Power Sources 276 (2015) 153–161. [44] A. Mousa, M. Skyllas-Kazacos, Physical properties of negative half-cell electrolytes in the vanadium redox flow battery, in: K.Y. Chan, C.Y.V. Lio (Eds.), Electrochemically Enabled Sustainability - Devices, Materials and Mechanisms for Energy Conversion, Francis Taylor, CRC Press, 2014, 2015. [45] G. Oriji, Y. Katayama, T. Miura, Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods, J. Power Sources 139 (2005) 321–324. [46] G. Origi, Y. Katayama, T. Miura, Investigation on V(IV)/V(V) species in a vanadium redox flow battery, Electrochim. Acta 49 (2004) 3091–3095. [47] F. Huang, Q. Zhao, C. Luo, G. Wang, K. Yan, D. Luo, Influence of Cr3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries, Chinese Sci. Bull. 57 (23) (2012) 4237–4243. [48] A.J. Bard, L.R. Faulkner, Electrochemical methods-fundamentals and applications, Second ed., Wiley, New York, 2001. [49] H. Liu, L. Yang, Q. Xu, C. Yan, An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V(II)/V(II) and V(IV)/V(V) couples in a vanadium redox flow battery, RSC Adv. 4 (2014) 55666–55670. [50] K. Hung, C. Masatapu, T. Ko, B. Wei, Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric, J. Power Sources 193 (2009) 944–949.

PDF Image | Broad temperature adaptability vanadium redox flow battery

broad-temperature-adaptability-vanadium-redox-flow-battery-010

PDF Search Title:

Broad temperature adaptability vanadium redox flow battery

Original File Name Searched:

1000013705522.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP