logo

Effect of Fe3 positive electrolyte vanadium redox flow

PDF Publication Title:

Effect of Fe3 positive electrolyte vanadium redox flow ( effect-fe3-positive-electrolyte-vanadium-redox-flow )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Authors’ contributions. M.D. and T.L. conceived and designed the experiments; M.D. performed the experiments and analysed the data; T.L., Y.Z., Z.C. and Y.Y. contributed reagents/materials/analysis tools; M.D. wrote this manuscript under the supervision of T.L., Y.Z. and Z.C. The manuscript correction and revision were carried out by M.D., Z.C., Y.Y. and Y.Y. Competing interests. We declare we have no competing interests. Funding. The work was supported by the Project of National Natural Science Foundation of China (Nos. 51474162 and 51774216), the Technical Innovation Special Major Project (2017ACA185) from Hubei Province of China and the Project of Natural Science Foundation of Hubei Province of China (No.2016CFB197). Acknowledgements. We thank the Test Center of Wuhan University of Science and Technology for ICP-AES measurements. We are also grateful to Jing Huang, Nan-Nan Xue, Peng-Cheng Hu and two anonymous reviewers, who provided comments that substantially improved the manuscript. 12 References 1. Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M, Mustafa I. 2013 Redox flow battery for energy storage. Arab. J. Sci. Eng. 38, 723 – 726. (doi:10.1007/s13369-012-0356-5) 2. Ferreira HL, Garde R, Fulli G, Kling W, Lopes JP. 2013 Characterization of electrical energy storage technologies. Energy 53, 292 – 298. (doi:10.1016/j.energy.2013.02.037) 3. ChoiC,KimS,KimR,ChoiY,KimS,JungH, Yang JH, Kim HT. 2017 A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sust. Energ. Rev. 69, 263 – 274. (doi:10. 1016/j.rser.2016.11.188) 4. WangW,LuoQ,LiB,WeiX,LiL,YangZ.2013 Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970 – 986. (doi:10.1002/adfm.201200694) 5. Ding C, Zhang H, Li X, Liu T, Xing F. 2013 Vanadium flow battery for energy storage: prospects and challenges. J. Phys. Chem. Lett. 4, 1281 – 1294. (doi:10.1021/jz4001032) 6. Tucker MC, Srinivasan V, Ross PN, Weber AZ. 2013 Performance and cycling of the iron-ion/ hydrogen redox flow cell with various catholyte salts. J. Appl. Electrochem. 43, 637 – 644. (doi:10.1007/s10800-013-0553-2) 7. Roznyatovskaya N, Noack J, Fuhl M, Pinkwart K, Tubke J. 2016 Towards an all-vanadium redox- flow battery electrolyte: electrooxidation of V(III) in V(IV)/V(III) redox couple. Electrochim. Acta 211, 926 – 932. (doi:10.1016/j.electacta. 2016.06.073) 8. Wu XW et al. 2017 Electrochemical performance of 5 kW all-vanadium redox flow battery stack with a flow frame of multi-distribution channels. J. Solid. State. Electr. 21, 429 – 435. (doi:10.1007/s10008-016-3361-x) 9. HeZX,HeYY,ChenC,YangS,LiuJL,HeZ,Liu SQ. 2014 Study of the electrochemical performance of VO2þ/VOþ2 redox couple in sulfamic acid for vanadium redox flow battery. Ionics 20, 949 – 955. (doi:10.1007/s11581-013- 1051-6) 10. Pan JX, Huang MY, Li X, Wang SB, Li WH, Ma T, Xie XF, Ramani V. 2016 The performance of all vanadium redox flow batteries at below-ambient temperatures. Energy 107, 784–790. (doi:10.1016/j.energy.2016.04.075) 11. Vijayakumar M, Li LY, Graff G, Liu J, Zhang HM, Yang ZG, Hu JZ. 2011 Towards understanding the poor thermal stability of V5þ electrolyte solution vanadium redox flow batteries. J. Power Sources 196, 3669 – 3672. (doi:10. 1016/j.jpowsour.2010.11.126) 12. JingMH,WeiZF,SuW,HeHX,FanXZ,QinY, Liu JG, Yan CW. 2016 Improved electrochemical performance for vanadium flow battery by optimizing the concentration of the electrolyte. J. Power Sources 324, 215 – 223. (doi:10.1016/j. jpowsour.2016.05.099) 13. Wen YH, Xu Y, Cheng J, Cao GP, Yang YS. 2013 Investigation on the stability of electrolyte in vanadium flow batteries. Electrochim. Acta 96, 268 – 273. (doi:10.1016/j.electacta.2013.02.091) 14. He ZX, Chen L, He YY, Chen C, Jiang YF, He Z, Liu SQ. 2013 Effect of In3þ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries. Ionics 19, 1915 – 1920. (doi:10.1007/s11581- 013-0945-7) 15. Huang F, Zhao Q, Luo CH, Wang GX, Yan KP, Luo DM. 2012 Influence of Cr3þ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries. Chin. Sci. Bull. 57, 4237 – 4243. (doi:10.1007/s11434-012- 5302-0) 16. DengZG,WeiC,FanG,LiMT,LiCX,LiXB.2010 Extracting vanadium from stone-coal by oxygen pressure acid leaching and solvent extraction. Trans. Nonferrous Met. Soc. China 20, 118 – 122. (doi:10.1016/S1003-6326(10)60024-6) 17. LiXB,WeiC,DengZG,LiMT,LiCX,FanG.2011 Selective solvent extraction of vanadium over iron from a stone coal/black shale acid leach solution by D2EHPA/TBP. Hydrometallurgy 105, 359 – 363. (doi:10.1016/j.hydromet.2010.10. 006) 18. Hu PC, Zhang YM, Liu T, Huang J, Yuan YZ, Zheng QS. 2017 Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching. J. Ind. Eng. Chem. 45, 241 – 247. (doi:10.1016/j.jiec.2016.09.029) 19. Li W, Zhang YM, Liu T, Huang J, Wang Y. 2013 Comparison of ion exchange and solvent extraction in recovering vanadium from sulfuric acid leach solutions of stone coal. Hydrometallurgy 132, 131 – 132. (doi:10.1016/j. hydromet.2012.09.009) 20. Yang X, Zhang YM, Bao SX, Shen C. 2016 Separation and recovery of vanadium from a sulfuric-acid leaching solution of stone coal by solvent extraction using trialkylamine. Sep. 21. 22. 23. 24. 25. 26. 27. 28. 29. Purif. Technol. 164, 49 – 55. (doi:10.1016/j. seppur.2016.03.021) Xiong P, Zhang YM, Huang J, Bao SX, Yang X, Shen C. 2017 High-efficient and selective extraction of vanadium (V) with N235-P507 synergistic extraction system. Chem. Eng. Res. Des. 120, 284 – 290. (doi:10.1016/j.cherd.2017.02.027) Huang KL, Li XG, Liu SQ, Tan N, Chen LQ. 2008 Research progress of vanadium redox flow battery for energy storage in China. Renew. Energ. 33, 186 – 192. (doi:10.1016/j.renene. 2007.05.025) Yang YD, Zhang YM, Liu T, Huang J. 2018 Improved properties of positive electrolyte for a vanadium redox flow battery by adding taurine. Res. Chem. Intermed. 44, 769 – 786. (doi:10. 1007/s11164-017-3133-y) HJ/T 345, National Standard of People’s Republic of China. 2007 Water quality- determination of iron-phenanthroline spectrophotometry. Beijing, People’s Republic of China: Standards Press of China. Wang G, Chen JW, Wang XQ, Tian J, Kang H, Zhu XJ, Zhang Y, Liu XJ, Wang RL. 2014 Study on stabilities and electrochemical behavior of V(V) electrolyte with acid additives for vanadium redox flow battery. J. Energy Chem. 23, 73 – 81. (doi:10. 1016/S2095-4956(14)60120-0) Wu XJ, Liu SQ, Wang NF, Peng S, He ZX. 2012 Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 78, 475 – 482. (doi:10.1016/j. electacta.2012.06.065) Liang XX, Peng S, Lei Y, Gao C, Wang NF, Liu SQ, Fang D. 2013 Effect of L-glutamic acid on the positive electrolyte for all-vanadium redox flow battery. Electrochim. Acta 95, 80 – 86. (doi:10.1016/j.electacta.2013.01.138) Liu JL, Liu SQ, He ZX, Han HG, Chen Y. 2014 Effects of organic additives with oxygen- and nitrogen- containing functional groups on the negative electrolyte of vanadium redox flow battery. Electrochim. Acta 130, 314 – 321. (doi:10.1016/j.electacta.2014.02. 116) Skyllas-Kazacos M, Kazacos M. 2011 State of charge monitoring methods for vanadium redox flow battery control. J. Power Sources 196, 8822 – 8827. (doi:10.1016/j.jpowsour. 2011.06.080) royalsocietypublishing.org/journal/rsos R. Soc. open sci. 6: 181309 Downloaded from https://royalsocietypublishing.org/ on 11 January 2023

PDF Image | Effect of Fe3 positive electrolyte vanadium redox flow

effect-fe3-positive-electrolyte-vanadium-redox-flow-012

PDF Search Title:

Effect of Fe3 positive electrolyte vanadium redox flow

Original File Name Searched:

rsos-181309.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP