PDF Publication Title:
Text from PDF Page: 024
245 [1] [2] [3] 250 [4] [5] [6] [7] [8] 260 [9] [10] [11] [12] [13] [14] 275 [15] [16] [17] M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, A. G. Fane, M. A. Green, New all-vanadium redox flow cell, Journal of the Electrochemical Society 133 (1986) 1057–1058. M. Skyllas-Kazacos, M. Rychcik, R. G. Robins, All-vanadium redox battery, U.S. Patent 4786567 (1988). M. Skyllas-Kazacos, B. G. Maddern, M. Kazacos, J. Joy, State of charge of redox cell, International Patent Application Number PCT/AU89/00252 (1989). C. Blanc, A. Rufer, Optimization of the operating point of a vanadium redox flow battery, in: Energy Conversion Congress and Exposition, IEEE, 2009, pp. 2600–2605. A. Tang, J. Bao, M. Skyllas-Kazacos, Studies on pressure losses and flow rate optimization in vanadium redox flow battery, Journal of Power Sources 248 (2014) 154–162. X. Ma, H. Zhang, C. Sun, Y. Zou, T. Zhang, An optimal strategy of electrolyte flow rate for vanadium redox flow battery, Journal of Power Sources 203 (2012) 153–158. B. Huang, Y. Qi, A. Murshed, Dynamic Modelling and Predictive Control in Solid Oxide Fuel Cells: First Principle and Data-Based Approaches, 2013. P. Vijay, M. O. Tad ́e, Z. Shao, Adaptive observer based approach for the fault diagnosis in solid oxide fuel cells, Journal of Process Control 84 (2019) 101–114. Y. Li, X. Zhang, J. Bao, M. Skyllas-Kazacos, Control of electrolyte flow rate for the vanadium redox flow battery by gain scheduling, Journal of Energy Storage 14 (2017) 125–133. J. Shamma, Analysis and design of gain scheduled control systems, Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology (1988). R. Nazari, M. M. Seron, J. A. De Dona, On virtual actuators for LPV systems under errors in the measurement of the varying parameter, in: 2015 5th Australian Control Conference (AUCC), 2015, pp. 148–152. R. J. McCloy, J. A. D. Dona ́, M. M. Seron, Control of a Maglev system using the LPV framework: A tutorial from modelling to experimental implementation, IFAC-PapersOnLine 51 (26) (2018) 100–105, 2nd IFAC Workshop on Linear Parameter Varying Systems LPVS 2018. M. Witczak, V. Puig, D. Rotondo, P. Witczak, A necessary and sufficient condition for total observability of discrete-time linear time-varying systems, IFAC-PapersOnLine 50 (1) (2017) 729–734, 20th IFAC World Congress. R. McCloy, J. De Dona ́, M. Seron, On the estimation of convergence times to invariant sets in convex polytopic uncertain systems, in: Artificial Life and Computational Intelligence, Vol. 8955 of Lecture Notes in Computer Science, Springer International Publishing, 2015, pp. 62–75. H. Haimovich, M. Seron, Bounds and invariant sets for a class of discrete-time switching systems with pertur- bations, International Journal of Control 87 (2) (2014) 371–383. R. McCloy, J. De Don ́a, M. Seron, Set theoretic approach to fault-tolerant control of linear parameter-varying systems with sensor reintegration, International Journal of Control 92 (4) (2017) 858–874. A.K.Singh,B.C.Pal,Anextendedlinearquadraticregulatorforltisystemswithexogenousinputs,Automatica 76 (2017) 10–16. 24 255 265 270 280 ReferencesPDF Image | Electrolyte Flow Rate Control Vanadium Redox Flow Batteries
PDF Search Title:
Electrolyte Flow Rate Control Vanadium Redox Flow BatteriesOriginal File Name Searched:
2201-12812.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |