PDF Publication Title:
Text from PDF Page: 008
668 X.W. Wu et al.: Electrolytes for energy 3. In the case of nonaqueous VRBs, their energy efficiency is low due to the low ionic conductivity, side reaction as well as the cross-over of active species through the anion-exchange membranes. These prob- lems are needed to solve prior to its practical application [54]. 4. Solid-salt electrolyte is a further direction since much higher energy density of 77 Wh/kg with energy efficiency of 87 % at the current density of 5 mA cm–2 can be achieved [55]. If the related problems are solved, VRBs based on solid electrolyte is expected to be a promising candidate for electric vehicles and energy storage. References [1] Y. N. Hu, H. F. Cheng. Environ. Sci. Tech. 47, 3044 (2013). [2] P. Ruetschi. J. Power Sources 127, 33 (2004). [3] J. M. Tarascon, M. Armand. Nature 414, 359 (2001). [4] P. Alotto, M. Guarnierin, F. Moro. Renew. Sust. Energy Rev. 29, 325 (2014). [5] M. Skyllas-Kazacos, M. Rychcik, R. Robins. A. G. Fang, M. A. Green. J. Electrochem. Soc. 133, 1057 (1986). [6] K. L. Huang, X. G. Li, S. Q. Liu, N. Tan, L. Q. Chen. Renew. Energy 33, 186 (2008). [7] X. W. Wu, J. P. Hu, J. Liu, Q. M. Zhou, W. X. Zhou, H. Y. Li, Y. P. Wu. Pure. Appl. Chem. 86, 633–649 (2014). [8] M. H. Chakrabarti, R. A. W. Dryfe, E. P. L. Roberts. Electrochim. Acta. 52, 2189 (2007). [9] M. Skyllas-Kazacos, M. Ryhick, R. Robins. US 4786567 (1998). [10] M. Kazacos, M. Cheng, M. Skyllas-Kazacos. J. Appl. Electrochem. 20, 463 (1990). [11] M. Skyllas-Kazacos, C. Menictas, M. Kazacos. J. Electrochem. Soc. 143, L86 (1996). [12] F. Rahman, M. Skyllas-Kazacos. J. Power Sources 189, 1212 (2009). [13] F. Rahman, M. Skyllas-Kazacos. J. Power Sources 72, 105 (1998). [14] J. X. Zhao, Z. H. Wu, J. Y. Xi, X. P. Qiu. J. Inorg. Mater. 27, 469 (2012). [15] Y. H. Wen, Y. Xu, J. Cheng, G. P. Cao, Y. S. Yang. Electrochim. Acta. 96, 268 (2013). [16] Y. H Wen, H. M. Zhang, P. Qian, P. Zhao, H. T. Zhou, B. L. Yi. Acta. Phys. Chim. Sin. 22, 403 (2006). [17] N. Kausar, R. Howe, M. Skyllas-Kazacos. J. Appl. Electrochem. 31, 1327 (2001). [18] X. Q. Lu. Electrochim. Acta. 46, 4281 (2001). [19] M. Vijayakumara, L. Y. Li, G. Gordon, J. Liu, H. M. Zhang, Z. G. Yang, J. Z. Hu. J. Power Sources 196, 3669 (2011). [20] Z. L. K. Z. C. Wang, Functional and Smart Materials-Structural Evolution and Structure Analysis, Springer-Verlag, Berlin, 1998. [21] M. Vijayakumar, S. D. Burton, C. Huang, L. Y. Li, Z. G. Yang, G. L. Graff, J. Liu, J. Z. Hu, M. Skyllas-Kazacos. J. Power Sources 195, 7709 (2010). [22] X. W. Wu, J. J. Wang, S. Q. Liu, X. W. Wu, S. Li. Electrochim. Acta. 56, 10197 (2011). [23] M. Skyllas-Kazaos, C. Peng, M. Cheng. Electrochem. Solid-State Lett. 2, 121 (1999). [24] J. L Zhang, L. Y. Li, Z. M. Nie, B. W. Chen, M. Vijayakumar, S. Kim, W. Wang, B. Schwenzer, J. Liu, Z. G. Yang. J. Appl. Electro- chem. 41, 1215 (2011). [25] M. Kazacos, M. Skyllas-Kazacos. US 7078123 (2006). [26] S. Li, K. L. Huang, S. Q. Liu, D. Fang, X. W. Wu, D. Lu, T. Wu. Electrochim. Acta. 56, 5483 (2011). [27] S. Peng, N. F. Wang, C. Gao, Y. Lei, X. X. Liang, Y. N. Liu, S. Q. Liu. Int. J. Electrochem. Sci. 7, 4314 (2012). [28] S. Peng, N. F. Wang, C. Gao, Y. Lei, X. X. Liang, Y. N. Liu, S. Q. Liu. Int. J. Electrochem. Sci. 7, 4388 (2012). [29] X. W. Wu, S. Q. Liu, K. L. Huang. J. Inorg. Mater 25, 641 (2010). [30] Z. J. Jia, B. G. Wang, S. Q. Song, X. Chen. J. Electrochem. Soc. 159, A843 (2012). [31] F. Chang, C. W. Hu, X. J. Liu, L. Liu, J. W. Zhang. Electrochim. Acta. 60, 334 (2012). [32] X. J. Wu, S. Q. Liu, N. F. Wang, S. Peng, Z. X. He. Electrochim. Acta. 78, 475 (2012). [33] X. X. Liang, S. Peng, Y. Lei, C. Gao, N. F. Wang, S. Q Liu, D. Fang. Electrochim. Acta. 95, 80 (2013). [34] Y. Lei, S. Q. Liu, C. Gao, X. X. Liang, Z. X. He, Y. H. Deng, Z. He. J. Electrochem. Soc. 160, A722 (2013). [35] Z. X. He, J. L. Liu, H. G. Han, Y. Chen, Z. Zhou, S. J. Zheng, W. Lu, S. Q. Liu, Z. He. Electrochim. Acta. 106, 556 (2013). [36] M. Kazacos, M. Skyllas-Kazacos. US 6562514 B1 (2003). [37] F. Huang, G. X. Wang, K. P. Yan, D. M. Luo. Chin. J. Inorg. Chem. 28, 898 (2012). [38] F. Huang, Q. Zhao, C. H. Luo, G. X. Wang, K. P. Yan, D. M. Luo. Chin. Sci. Bull. 57, 4237 (2012). [39] Z. X. He, L. Chen, Y. Y. He, C. Chen, Y. F. Jiang, Z. He, S. Q. Liu. Ionics 19, 1915 (2013). [40] M. Vijayakumar, W. Wang, Z. M. Nie, V. Sprenkle, J. Z. Hu. J. Power Sources 241, 173 (2013). [41] L. Y. Li, S. Kim, W. Wang, M. Vijayakumar, Z. M. Nie, B. W. Chen, J. L. Zhang, G. G. Xia, J. Z. Hu, G. Graff, J. Liu, Z. G. Yang. Adv Energy Mater. 1, 394 (2011).PDF Image | Electrolytes for vanadium redox flow batteries
PDF Search Title:
Electrolytes for vanadium redox flow batteriesOriginal File Name Searched:
10-1515_pac-2013-1213.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)