logo

Extending organic flow batteries via redox state management

PDF Publication Title:

Extending organic flow batteries via redox state management ( extending-organic-flow-batteries-via-redox-state-management )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

Journal of the American Chemical Society Communication comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 2014, 7 (11), 3459−3477. (12) Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. Int. Ed. 2017, 56 (3), 686−711. (13) Huskinson, B.; Rugolo, J.; Mondal, S. K.; Aziz, M. J. A High Power Density, High Efficiency Hydrogen-Chlorine Regenerative Fuel Cell with a Low Precious Metal Content Catalyst. Energy Environ. Sci. 2012, 5 (9), 8690. (14) Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505 (7482), 195−8. (15) Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. An aqueous, polymer- based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78−81. (16) Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J.; Marshak, M. P. Alkaline quinone flow battery. Science 2015, 349 (6255), 1529. (17)Lin,K.;Goḿez-Bombarelli,R.;Beh,E.S.;Tong,L.;Chen,Q.; Valle, A.; Aspuru-Guzik, A.; Aziz, M. J.; Gordon, R. G. A redox-flow battery with an alloxazine-based organic electrolyte. Nature Energy 2016, 1 (9), 16102. (18) Orita, A.; Verde, M. G.; Sakai, M.; Meng, Y. S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7 (1), 13230. (19) Hoober-Burkhardt, L.; Krishnamoorthy, S.; Yang, B.; Murali, A.; Nirmalchandar, A.; Surya Prakash, G. K.; Narayanan, S. R. A new Michael-reaction-resistant benzoquinone for aqueous organic redox flow batteries. J. Electrochem. Soc. 2017, 164 (4), A600−A607. (20) Liu, T.; Wei, X.; Nie, Z.; Sprenkle, V.; Wang, W. A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Adv. Energy Mater. 2016, 6 (3), 1501449. (21) Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Surya Prakash, G. K.; Narayanan, S. R. An inexpensive aqueous flow battery for large- scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 2014, 161, A1371−A1380. (22) Yang, B.; Hoober-Burkhardt, L.; Krishnamoorthy, S.; Murali, A.; Surya Prakash, G. K.; Narayanan, S. R. High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes. J. Electrochem. Soc. 2016, 163, A1442−A1449. (23) Janoschka, T.; Martin, N.; Hager, M. D.; Schubert, U. S. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Angew. Chem. Int. Ed. 2016, 55, 14427− 14430. (24) Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T. L. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. J. Am. Chem. Soc. 2017, 139 (3), 1207− 1214. (25) Beh, E. S.; De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A neutral pH aqueous organic−organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2017, 2 (3), 639−644. (26) DeBruler, C.; Hu, B.; Moss, J.; Liu, X.; Luo, J.; Sun, Y.; Liu, T. L. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem. 2017, 3, 961− 978. (27) Janoschka, T.; Morgenstern, S.; Hiller, H.; Friebe, C.; Wolkersdorfer, K.; Haupler, B.; Hager, M. D.; Schubert, U. S. Synthesis and characterization of TEMPO- and viologen- polymers for water-based redox-flow batteries. Polym. Chem. 2015, 6 (45), 7801−7811. (28) Winsberg, J.; Stolze, C.; Muench, S.; Liedl, F.; Hager, M. D.; Schubert, U. S. TEMPO/phenazine combi-molecule: a redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett. 2016, 1 (5), 976−980. 8018 (29) Hollas, A.; Wei, X.; Murugesan, V.; Nie, Z.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A biomimetic high-capacity phenazine- based anolyte for aqueous organic redox flow batteries. Nature Energy 2018, 3 (6), 508−514. (30) Li, Z.; Li, S.; Liu, S.; Huang, K.; Fang, D.; Wang, F.; Peng, S. Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthali- mide. Electrochem. Solid-State Lett. 2011, 14 (12), A171. (31) Wedege, K.; Drazevic, E.; Konya, D.; Bentien, A. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. Sci. Rep. 2016, 6, 39101. (32) Xu, Y.; Wen, Y. H.; Cheng, J.; Cao, G. P.; Yang, Y. S. A study of tiron in aqueous solutions for redox flow battery application. Electrochim. Acta 2010, 55 (3), 715−720. (33) Orita, A.; Verde, M. G.; Sakai, M.; Meng, Y. S. The impact of pH on side reactions for aqueous redox flow batteries based on nitroxyl radical compounds. J. Power Sources 2016, 321, 126−134. (34) Kwabi, D. G.; Lin, K.; Ji, Y.; Kerr, E. F.; Goulet, M.-A.; De Porcellinis, D.; Tabor, D. P.; Pollack, D. A.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2018, 2, 1907. (35) Luo, J.; Hu, B.; DeBruler, C.; Liu, T. A “π-Conjugation Extended Viologen” as Novel Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Battery. Angew. Chem. Int. Ed. 2018, 57 (1), 231−235. (36) DeBruler, C.; Hu, B.; Moss, J.; Luo, J.; Liu, T. L. A sulfonate- functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 2018, 3 (3), 663−668. (37) Hu, B.; Tang, Y.; Luo, J.; Grove, G.; Guo, Y.; Liu, T. Improved Radical Stability of Viologen Anolyte in Aqueous Organic Redox Flow Battery. Chem. Commun. 2018, 54, 6871. (38) Hu, B.; Liu, T. L. Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery. J. Energy Chem. 2018, 27 (5), 1326−1332. (39) Murali, A.; Nirmalchandar, A.; Krishnamoorthy, S.; Hoober- Burkhardt, L.; Yang, B.; Soloveichik, G. L.; Surya Prakash, G. K.; Narayanan, S. R. Understanding and mitigating capacity fade in aqueous organic redox flow batteries. J. Electrochem. Soc. 2018, 165 (7), A1193. (40) Xu, Y.; Wen, Y. H.; Cheng, J.; Cao, G. P.; Yang, Y. S. Electrochemical Reaction Mechanism of Tiron in Acidic Aqueous Solution. Adv. Mater. Res. 2011, 396−398, 1730−1735. (41)Tabor,D.P.;Goḿez-Bombarelli,R.;Tong,L.;Gordon,R.G.; Aziz, M. J.; Aspuru-Guzik, A. Theoretical and Experimental Investigation of the Stability Limits of Quinones in Aqueous Media: Implications for Organic Aqueous Redox Flow Batteries. ChemRxiv 2018, DOI: 10.26434/chemrxiv.6990053.v2. (42) Perry, M. L.; Weber, A. Z. Advanced Redox-Flow Batteries: A Perspective. J. Electrochem. Soc. 2016, 163 (1), A5064−A5067. (43) Goulet, M.-A.; Aziz, M. J. Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods. J. Electrochem. Soc. 2018, 165 (7), A1466−A1477. (44) Beck, F.; Heydecke, G. On the Mechanism of the Cathodic Reduction of Anthraquinone to Anthrone. Berichte der Bunsengesell- schaft für physikalische Chemie 1987, 91 (1), 37−43. (45) Serdyuk, A. A.; Kasianchuk, M. G.; Opeida, I. A. Kinetics of Amine Catalysed Oxidation of Anthrone by Oxygen in Aprotic Solvents. Russ. J. Phys. Chem. A 2010, 84 (3), 391−394. (46) Iwata, M.; Kuzuhara, H. Oxidation of Anthracenols and Anthrone to Anthraquinones with Oxygen Mediated by Copper(II) Ion and Imidazole. Bull. Chem. Soc. Jpn. 1985, 58, 1609−1610. (47) Cavey, D.; Caron, J.-C.; Shroot, B. Anthralin: Chemical instability and glucose-6-phosphate dehydrogenase inhibition. J. Pharm. Sci. 1982, 71 (9), 980−983. (48) Müller, K.; Eibler, E.; Mayer, K. K.; Wiegrebe, W.; Klug, G. Dithranol, Singlet Oxygen and Unsaturated Fatty Acids. Arch. Pharm. 1986, 319, 2−9. DOI: 10.1021/jacs.8b13295 J. Am. Chem. Soc. 2019, 141, 8014−8019

PDF Image | Extending organic flow batteries via redox state management

extending-organic-flow-batteries-via-redox-state-management-005

PDF Search Title:

Extending organic flow batteries via redox state management

Original File Name Searched:

mja287.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP