logo

Model-based Design Vanadium Redox Flow Batteries

PDF Publication Title:

Model-based Design Vanadium Redox Flow Batteries ( model-based-design-vanadium-redox-flow-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 166

Appendix D  Bibliography [14]Wandschneider, F. T., Finke, D., Grosjean, S., Fischer, P., Pinkwart, K., Tübke, J., and Nirschl, H. 2014. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction. Journal of Power Sources 272, 436–447. [15]Noack, J., Roznyatovskaya, N., Herr, T., and Fischer, P. 2015. The Chemistry of Redox-Flow Batteries. Angewandte Chemie (International ed. in English) 54, 34, 9776–9809. [16]König, S., Suriyah, M. R., and Leibfried, T. 2016. Innovative model-based flow rate optimization for vanadium redox flow batteries. Journal of Power Sources 333, 134–144. [17]Blanc, C. 2009. Modeling of Vanadium Redox Flow Battery Electricity Storage System, EPFL. [18]Knehr, K. W., Agar, E., Dennison, C. R., Kalidindi, A. R., and Kumbur, E. C. 2012. A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane. J. Electrochem. Soc. 159, 9, A1446- A1459. [19]Li, Y., Skyllas-Kazacos, M., and Bao, J. 2016. A dynamic plug flow reactor model for a vanadium redox flow battery cell. Journal of Power Sources 311, 57–67. [20]Giorno, L., Strathmann, H., and Drioli, E. 2016. Mathematical Description of Mass Transport in Membranes. In Encyclopedia of Membranes, E. Drioli and L. Giorno, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 1135–1138. [21]Lei, Y., Zhang, B. W., Bai, B. F., and Zhao, T. S. 2015. A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries. Journal of Power Sources 299, 202–211. [22]Shah, A. A., Watt-Smith, M. J., and Walsh, F. C. 2008. A dynamic performance model for redox-flow batteries involving soluble species. Electrochimica Acta 53, 27, 8087–8100. [23]Shah, A. A., Al-Fetlawi, H., and Walsh, F. C. 2010. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochimica Acta 55, 3, 1125–1139. [24]Boettcher, P. A., Agar, E., Dennison, C. R., and Kumbur, E. C. 2015. Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling. J. Electrochem. Soc. 163, 1, A5244-A5252. [25]Knehr, K. W. and Kumbur, E. C. 2012. Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries. Electrochemistry Communications 23, 76–79. 158

PDF Image | Model-based Design Vanadium Redox Flow Batteries

model-based-design-vanadium-redox-flow-batteries-166

PDF Search Title:

Model-based Design Vanadium Redox Flow Batteries

Original File Name Searched:

10-5445IR1000070670.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP