PDF Publication Title:
Text from PDF Page: 169
Appendix D Bibliography [52]Yang, W. W., He, Y. L., and Li, Y. S. 2015. Performance Modeling of a Vanadium Redox Flow Battery during Discharging. Electrochimica Acta 155, 279–287. [53]Shah, A. A., Tangirala, R., Singh, R., Wills, R. G. A., and Walsh, F. C. 2011. A Dynamic Unit Cell Model for the All-Vanadium Flow Battery. J. Electrochem. Soc. 158, 6, A671. [54]Sum, E. and Skyllas-Kazacos, M. 1985. A study of the V(II)/V(III) redox couple for redox flow cell applications. Journal of Power Sources 15, 2-3, 179–190. [55]Yamamura, T., Watanabe, N., Yano, T., and Shiokawa, Y. 2005. Electron-Transfer Kinetics of Np3+/Np4+, NpO2+/NpO22+, V2+/V3+, and VO2+/VO2+ at Carbon Electrodes. J. Electrochem. Soc. 152, 4, A830. [56]Gattrell, M., Park, J., MacDougall, B., Apte, J., McCarthy, S., and Wu, C. W. 2004. Study of the Mechanism of the Vanadium 4+/5+ Redox Reaction in Acidic Solutions. J. Electrochem. Soc. 151, 1, A123. [57]You, D., Zhang, H., and Chen, J. 2009. A simple model for the vanadium redox battery. Electrochimica Acta 54, 27, 6827–6836. [58]Fink, H., Friedl, J., and Stimming, U. 2016. Composition of the Electrode Determines Which Half-Cell’s Rate Constant is Higher in a Vanadium Flow Battery. J. Phys. Chem. C 120, 29, 15893–15901. [59]Friedl, J. and Stimming, U. 2017. Determining Electron Transfer Kinetics at Porous Electrodes. Electrochimica Acta. [60]González, Z., Flox, C., Blanco, C., Granda, M., Morante, J. R., Menéndez, R., and Santamaría, R. 2016. Outstanding electrochemical performance of a graphene- modified graphite felt for vanadium redox flow battery application. Journal of Power Sources. [61]Schmal, D., van Erkel, J., and van Duin, P. J. 1986. Mass transfer at carbon fibre electrodes. J Appl Electrochem 16, 3, 422–430. [62]Delanghe, B., Tellier, S., and Astruc, M. 1990. Mass transfer to a carbon or graphite felt electrode. Electrochimica Acta 35, 9, 1369–1376. [63]Kinoshita, K. 1982. Mass-Transfer Study of Carbon Felt, Flow-Through Electrode. J. Electrochem. Soc. 129, 9, 1993. [64]Tjaden, B., Cooper, S. J., Brett, D. J. L., Kramer, D., and Shearing, P. R. 2016. On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Current Opinion in Chemical Engineering 12, 44–51. [65]Zhou, X. L., Zhao, T. S., An, L., Zeng, Y. K., and Yan, X. H. 2015. A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility. Applied Energy 158, 157–166. 161PDF Image | Model-based Design Vanadium Redox Flow Batteries
PDF Search Title:
Model-based Design Vanadium Redox Flow BatteriesOriginal File Name Searched:
10-5445IR1000070670.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)