PDF Publication Title:
Text from PDF Page: 142
Based on Water-Soluble Organic Redox Couples’, Journal of The Electrochemical Society, vol. 161, no. 9, pp. A1371–A1380, 2014. [29] K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz and M. P. Marshak, ‘Alkaline quinone flow battery’, Science, vol. 349, no. 6255, pp. 1529–1532, 2015. [30] K. Wedege, D. Konya, E. Drazevic and A. Bentien, ‘Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility’, Sci- entific Reports, vol. 6, pp. 1–13, 2016. [31] M. R. Gerhardt, L. Tong, R. Gómez-Bombarelli, Q. Chen, M. P. Marshak, C. J. Galvin, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, ‘Anthraquinone Derivatives in Aqueous Flow Batteries’, Advanced Energy Materials, vol. 7, no. 8, pp. 1601488:1– 9, 2016. [32] Z. Yang, L. Tong, D. P. Tabor, E. S. Beh, M.-A. Goulet, D. De Porcellinis, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, ‘Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy’, Advanced Energy Materials, vol. 8, no. 8, pp. 1702056:1–9, 2017. [33] J. B. Gerken, C. W. Anson, Y. Preger, P. G. Symons, J. D. Genders, Y. Qiu, W. Li, T. W. Root and S. S. Stahl, ‘Comparison of Quinone-Based Catholytes for Aqueous Redox Flow Batteries and Demonstration of Long-Term Stability with Tetrasub- stituted Quinones’, Advanced Energy Materials, vol. 10, no. 20, pp. 2000340:1–7, 2020. [34] J. E. Bachman, L. A. Curtiss and R. S. Assary, ‘Investigation of the Redox Chem- istry of Anthraquinone Derivatives Using Density Functional Theory’, The Journal of Physical Chemistry A, vol. 118, no. 38, pp. 8852–8860, 2014. [35] R. P. Fornari, M. Mesta, J. Hjelm, T. Vegge and P. de Silva, ‘Molecular Engineering Strategies for Symmetric Aqueous Organic Redox Flow Batteries’, ACS Materials Letters, vol. 2, no. 3, pp. 239–246, 2020. [36] J. Noack, N. Roznyatovskaya, T. Herr and P. Fischer, ‘The Chemistry of Redox-Flow Batteries’, Angewandte Chemie International Edition, vol. 54, no. 34, pp. 9776–9809, 2015. [37] P. Leung, A. A. Shah, L. Sanz, C. Flox, J. R. Morante, Q. Xu, M. R. Mohamed, C. Ponce de León and F. C. Walsh, ‘Recent developments in organic redox flow batteries: A critical review’, Journal of Power Sources, vol. 360, pp. 243–283, 2017. [38] D. G. Kwabi, Y. Ji and M. J. Aziz, ‘Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review’, Chemical Reviews, vol. 120, no. 14, pp. 6467– 6489, 2020. [39] F. Pan and Q. Wang, ‘Redox Species of Redox Flow Batteries: A Review’, Molecules, vol. 20, no. 11, pp. 20 499–20 517, 2015. [40] G. L. Soloveichik, ‘Flow Batteries: Current Status and Trends’, Chemical Reviews, vol. 115, no. 20, pp. 11 533–11 558, 2015. [41] M. Skyllas-Kazacos and F. Grossmith, ‘Efficient Vanadium Redox Flow Cell’, Jour- nal of The Electrochemical Society, vol. 134, no. 12, pp. 2950–2953, 1987. [42] C.-N. Sun, F. M. Delnick, D. S. Aaron, A. B. Papandrew, M. M. Mench and T. A. Zawodzinski, ‘Probing Electrode Losses in All-Vanadium Redox Flow Batteries with Impedance Spectroscopy’, ECS Electrochemistry Letters, vol. 2, no. 5, pp. A43–A45, 2013. Bibliography 121PDF Image | Organic Redox Flow Batteries 2023
PDF Search Title:
Organic Redox Flow Batteries 2023Original File Name Searched:
PhD_thesis_final_dorhoff_4_.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)