PDF Publication Title:
Text from PDF Page: 145
Bibliography overpotentials in redox flow batteries’, Electrochimica Acta, vol. 229, pp. 261–270, 2017. [74] T. F. Fuller and J. N. Harb, Electrochemical Engineering, First Edition. Hoboken, New Jersey, USA: John Wiley & Sons, 2018. [75] M. D. Murbach, B. Gerwe, N. Dawson-Elli and L.-k. Tsui, ‘Impedance.py: A Python package for electrochemical impedance analysis’, Journal of Open Source Software, vol. 5, no. 52, pp. 2349:1–5, 2020. [76] C. R. Harris, K. J. Millman, S. J. v. d. Walt, R. Gommers, P. Virtanen, D. Cour- napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. v. Kerkwijk, M. Brett, A. Haldane, J. F. d. Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T. E. Oliphant, ‘Array programming with NumPy’, Nature, vol. 585, no. 7825, pp. 357–362, 2020. [77] W. McKinney, ‘Data Structures for Statistical Computing in Python’, in Proceedings of the 9th Python in Science Conference, S. v. d. Walt and J. Millman, Eds., 2010, pp. 51–56. [78] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contributors, ‘SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python’, Nature Methods, vol. 17, pp. 261–272, 2020. [79] J. D. Hunter, ‘Matplotlib: A 2D graphics environment’, Computing in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007. [80] B. A. Boukamp, ‘A Linear Kronig-Kramers Transform Test for Immittance Data Validation’, Journal of The Electrochemical Society, vol. 142, no. 6, pp. 1885–1894, 1995. [81] W. J. Blaedel and R. C. Engstrom, ‘Investigations of the ferricyanide-ferrocyanide system by pulsed rotation voltammetry’, Analytical Chemistry, vol. 50, no. 3, pp. 476– 479, 1978. [82] Q. Zhao, Z. Zhu and J. Chen, ‘Molecular Engineering with Organic Carbonyl Elec- trode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries’, Advanced Materials, vol. 29, no. 48, pp. 1607007:1–25, 2017. [83] M. Gillner, G. Moore, H. Cederberg and K. Gustafsson, ‘Hydroquinone (Environ- mental Health Criteria Series 157)’, International Programme on Chemical Safety, Tech. Rep., 1994. [84] L. Tong, Q. Chen, A. A. Wong, R. Gómez-Bombarelli, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, ‘UV-Vis spectrophotometry of quinone flow battery elec- trolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation’, Physical Chemistry Chemical Physics, vol. 19, no. 47, pp. 31 684–31 691, 2017. [85] K. J. Kim, M.-S. Park, Y.-J. Kim, J. H. Kim, S. X. Dou and M. Skyllas-Kazacos, ‘A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries’, Journal of Materials Chemistry A, vol. 3, no. 33, pp. 16 913–16 933, 2015. 124PDF Image | Organic Redox Flow Batteries 2023
PDF Search Title:
Organic Redox Flow Batteries 2023Original File Name Searched:
PhD_thesis_final_dorhoff_4_.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)