PDF Publication Title:
Text from PDF Page: 154
List of Tables 1.1 Overview of various energy storage technologies grouped by the form of energystored................................... 1 2.1 Literature values of the quinone-based and ferri-/ferrocyanide-based elec- trolytespresentedinChapter2. ........................ 14 2.2 Molecular electrochemistry literature values of the quinones presented in Chapter2..................................... 15 4.1 Experimentally determined diffusion and kinetic parameters for the inve- stigatedmaterials. ............................... 68 A.1 Supplier information of the chemicals used in this work. . . . . . . . . . . . 135 A.2 ReferencepotentialsoftheREsusedinthiswork. . . . . . . . . . . . . . . 136 A.3 Supplier information of the electrode, membrane, and gasket materials used in this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 A.4 Mean thicknesses of the cell hardware used for dry cell measurements and corresponding compression rates of the electrodes. . . . . . . . . . . . . . . 137 E.1 Fixed model parameters used for modelling impedance spectra of symme- tric ferri-/ferrocyanide, DHAQ, and DBEAQ cells. The electrode-specific values are valid for a single electrode (stack of 2×Sigracet 39AA papers). a AccordingtoEquation3.51andusingd=7×10−4cmandε=0.80.. . . 149 E.2 Best fit model parameters obtained from modelling the impedance of blank Sigracet39AAcellspresentedinFigure6.6. . . . . . . . . . . . . . . . . . 150 E.3 Best fit model parameters obtained from modelling the impedance spectra of the symmetric 0.1M K3[Fe(CN)6]/0.1M K4[Fe(CN)6] cell presented in Figure6.12. ...................................150 E.4 Best fit model parameters obtained from modelling the impedance spectra of the symmetric 0.1M K3[Fe(CN)6]/0.1M K4[Fe(CN)6] cell presented in Figure6.16. ...................................151 E.5 Best fit model parameters obtained from modelling the impedance spectra of the symmetric 0.05 M/0.05 M DHAQ/DHAHQ cell presented in Figure 6.21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 E.6 Best fit model parameters obtained from modelling the impedance spectra of the symmetric 0.05 M0.05 M DBEAQ/DBEAHQ cell presented in Figure 6.24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 133PDF Image | Organic Redox Flow Batteries 2023
PDF Search Title:
Organic Redox Flow Batteries 2023Original File Name Searched:
PhD_thesis_final_dorhoff_4_.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)