PDF Publication Title:
Text from PDF Page: 019
Energies 2021, 14, 5643 19 of 45 Some studies have the main objective of studying the performance of organic elec- trolytes in a cell configuration. T. Liu and colleagues reported an A-ORFB using methyl viologen (MV) and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-HO-TEMPO), having achieved an EE of 62.5% at 60 mA cm−2 with stable cycling through 100 cycles [157]. B. Hu et al. [158] studied the effect of supporting electrolytes and ion exchange mem- branes on the performance of an A-ORFB cell with FcNCl and MV. In this manuscript, the authors achieved 79% EE at 60 mA cm−2 with great stability for 200 cycles. The same author also reported an A-ORFB using 1,1′-bis[3-(trimethylammonio)propyl]-4,4′- bipyridinium tetrachloride and 4-trimethylammonium-TEMPO chloride as active species. In this study, the authors demonstrated an EE that ranged from 87% at 20 mA cm−2 to 48% at 80 mA cm−2 with good cycling stability for 500 cycles [159]. Feng et al. [160] developed a ketone to be implemented as the active species in an A-ORFB by undergo- ing hydrogenation and dehydrogenation reactions. The fluorenone derivative that was produced showed efficient operation and stable long-term cycling. Some studies have the main objective of studying the performance of organic electrolytes in a cell config- uration. T. Liu and colleagues reported an A-ORFB using methyl viologen (MV) and 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-HO-TEMPO), having achieved an EE of 62.5% at 60 mA cm−2 with stable cycling through 100 cycles [157]. B. Hu et al. [158] studied the effect of supporting electrolytes and ion exchange membranes on the perfor- mance of an A-ORFB cell with FcNCl and MV. In this manuscript, the authors achieved 79% EE at 60 mA cm−2 with great stability for 200 cycles. The same author also reported an A-ORFB using 1,1′-bis[3-(trimethylammonio)propyl]-4,4′-bipyridinium tetrachloride and 4-trimethylammonium-TEMPO chloride as active species. In this study, the authors demonstrated an EE that ranged from 87% at 20 mA cm−2 to 48% at 80 mA cm−2 with good cycling stability for 500 cycles [159]. Feng et al. [160] developed a ketone to be implemented as the active species in an A-ORFB by undergoing hydrogenation and dehydrogenation reactions. The fluorenone derivative that was produced showed efficient operation and stable long-term cycling. Organometallic complexes have also received some attention from the scientific community for their tunable standard redox potential and the reduced crossover of active species through the membrane. C. Noh et al. [161] explored iron- and cobalt- triethanolamine as redox couples. With this redox couple the authors recorded a perfor- mance of 62% EE at 40 mA cm−2 for 20 cycles. Later, the same group improved upon this result by incorporating a new ligand, triisopropanolamine. Using the new ligand, the authors achieved 77% EE at 40 mA cm−2 for 100 cycles [162]. W. Ruan and colleagues studied a cell using FeCN and Cr with dipicolinic acid as a ligand. Their tests show EE values that begin at ca. 90% and drop to 85% through 120 cycles at 10 mA cm−2 [163]. M. Shin et al. [164] also used FeCN to couple with an organometallic complex composed of Fe and 3-[bis(2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid as a ligand. This redox couple could be cycled for 100 cycles at 80 mA cm−2 with an EE of 70%. Organometal- lic complexes have also received some attention from the scientific community for their tunable standard redox potential and the reduced crossover of active species through the membrane. C. Noh et al. [161] explored iron- and cobalt-triethanolamine as redox couples. With this redox couple the authors recorded a performance of 62% EE at 40 mA cm−2 for 20 cycles. Later, the same group improved upon this result by incorporating a new ligand, triisopropanolamine. Using the new ligand, the authors achieved 77% EE at 40 mA cm−2 for 100 cycles [162]. W. Ruan and colleagues studied a cell using FeCN and Cr with dipicolinic acid as a ligand. Their tests show EE that begin at ca. 90% and drop to 85% through 120 cycles at 10 mA cm−2 [163]. M. Shin et al. [164] also used FeCN to couple with an organometallic complex composed of Fe and 3-[bis(2-hydroxyethyl) amino]-2-hydroxypropanesulfonic acid as a ligand. This redox couple could be cycled for 100 cycles at 80 mA cm−2 with an EE of 70%. A-ORFBs are an important branch of RFBs, and their commercial application would be a huge step for these technologies. Even though organic species are highly versatilePDF Image | PNNL Vanadium Redox Flow Battery Stack
PDF Search Title:
PNNL Vanadium Redox Flow Battery StackOriginal File Name Searched:
energies-14-05643-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)