PNNL Vanadium Redox Flow Battery Stack

PDF Publication Title:

PNNL Vanadium Redox Flow Battery Stack ( pnnl-vanadium-redox-flow-battery-stack )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 028

Energies 2021, 14, 5643 28 of 45 solutions to solve the problems previously explained make the commercial price of these batteries similar to other RFBs [3,10,246,247]. The focus of research towards ZBFB has been the reduction of dendrite formation and improvement of the electrolyte conductivity. To attenuate these downsides, M. C. Wu et al. [248] added chloride-based salts to act as a supporting electrolyte and showed 74.3% EE at 40 mA cm−2, which represented an improvement of 13.9% when compared to a ZBFB without this addition to the electrolyte. Furthermore, they did a thermal treatment to the graphite felt electrode, which improved the performance of the cell even more reaching a value of 81.8% EE at the same current density. The same group surpassed these results one year later by adding methanesulfonic acid to the electrolyte, which further increased the EE to 75% at the same current density. In this study, thermally treated electrodes were also added, which translated to an EE of 78% at 80 mA cm−2 (in the previous publication, they had achieved 70% EE at the same current density) [249]. H. R. Jiang and coworkers studied how to promote a uniform distribution of zinc throughout the electrode and found that it was possible to achieve this by increasing the number of single vacancies, having demonstrated this by comparing a graphite felt elec- trode with defects and an original graphite felt electrode in a ZBFB [250]. Archana et al. [251] opted to just modify the graphite felt electrode with a thermal treatment and a plasma treatment under oxygen and nitrogen atmospheres. The authors reported that electrodes with high surface areas and functional groups showed improved performance during cy- cling at low current densities. However, it was concluded that for higher current densities, electrodes covered with oxygen functional groups on the surface were preferred. W. Lu doped carbon felt electrodes with nitrogen, reaching an EE of 63.07% at 180 mA cm−2, with a more uniform deposition of zinc on its surface [252]. Mariyappan and coworkers studied the effect of adding a low loading of platinum on graphite felt using a pulsed laser depo- sition. An 88% EE at 50 mA cm−2 was achieved using the mentioned strategy [253]. Lee et al. [254] implemented a titanium-based mesh interlayer with a carbon-based electrode to suppress the formation of dendrites, achieving 48.2% EE at 40 mA cm−2. A cathode catalyst of carbon-manganite nanoflakes in combination with a K+-conducting membrane were studied by X. Yuan and his team. An average output potential of 2.15 V and 276.7 Wh kg−1 energy density without capacity fade over 200 cycles was reported [255]. Even though changes in the electrode and on the electrolyte are the most reported strategies to improve the performance of ZBFB, there are also other strategies that should be considered. L. Hua et al. [256] proposed a porous composite membrane in addition to a bromine complexing agent and reached an EE of 85.31% at 40 mA cm−2 with a stable operation at 140 mA cm−2. The influence of flow rate on the polarization effect and the addition of perchloric acid to the positive electrolyte were studied by Adith and coworkers, having achieved an EE of ca. 69% at 30 mA cm−2 [257]. F. Yu and coworkers aimed higher, and proposed a “supercapattery” by using soluble additives in the electrolyte combined with a S/P co-doped carbon-based positive electrode and a carbon cloth-based negative electrode. These changes culminated in a battery with 270 Wh kg−1 and a maximum power density of 9300 W kg−1 [258]. ZBFB are one of the RFBs with the most know-how. However, these batteries still exhibit disadvantages that cannot be ignored. Problems such as the formation of dendrites can only be mitigated and never fully solved. The premise of ZBFB is very enticing, i.e., higher redox standard potential, higher specific energy, and low-cost materials. Nonethe- less, the extra care that must be taken with these types of batteries to ensure safe use and long life increase their price, making them lose the main advantages against batteries that use more expensive materials. Even though these batteries are commercially available, they do not seem a promising a long-term solution, and will be replaced as soon as an improved low-cost option becomes available.

PDF Image | PNNL Vanadium Redox Flow Battery Stack

PDF Search Title:

PNNL Vanadium Redox Flow Battery Stack

Original File Name Searched:

energies-14-05643-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)