PDF Publication Title:
Text from PDF Page: 041
Energies 2021, 14, 5643 41 of 45 157. Liu, T.; Wei, X.; Nie, Z.; Sprenkle, V.; Wang, W. A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Adv. Energy Mater. 2016, 6, 1501449. [CrossRef] 158. Hu,B.;Seefeldt,C.;DeBruler,C.;Liu,T.L.BoostingtheEnergyEfficiencyandPowerPerformanceofNeutralAqueousOrganic Redox Flow Batteries. J. Mater. Chem. A 2017, 5, 22137–22145. [CrossRef] 159. Hu,B.;Tang,Y.;Luo,J.;Grove,G.;Guo,Y.;Liu,T.L.ImprovedRadicalStabilityofViologenAnolytesinAqueousOrganicRedox Flow Batteries. Chem. Commun. 2018, 54, 6871–6874. [CrossRef] [PubMed] 160. Feng,R.;Zhang,X.;Murugesan,V.;Hollas,A.;Chen,Y.;Shao,Y.;Walter,E.;Wellala,N.P.N.;Yan,L.;Rosso,K.M.;etal.Reversible Ketone Hydrogenation and Dehydrogenation for Aqueous Organic Redox Flow Batteries. Science 2021, 372, 836–840. [CrossRef] 161. Noh,C.;Chung,Y.;Kwon,Y.OrganometallicRedoxFlowBatteriesUsingIronTriethanolamineandCobaltTriethanolamine Complexes. J. Power Sources 2020, 466, 228333. [CrossRef] 162. Noh,C.;Chung,Y.;Kwon,Y.HighlyStableAqueousOrganometallicRedoxFlowBatteriesUsingCobaltTriisopropanolamine and Iron Triisopropanolamine Complexes. Chem. Eng. J. 2021, 405, 126966. [CrossRef] 163. Ruan,W.;Mao,J.;Yang,S.;Shi,C.;Jia,G.;Chen,Q.DesigningCrComplexesforaNeutralFe–CrRedoxFlowBattery.Chem. Commun. 2020, 56, 3171–3174. [CrossRef] 164. Shin,M.;Noh,C.;Chung,Y.;Kwon,Y.AllIronAqueousRedoxFlowBatteriesUsingOrganometallicComplexesConsistingof Iron and 3-[Bis (2-Hydroxyethyl)Amino]-2-Hydroxypropanesulfonic Acid Ligand and Ferrocyanide as Redox Couple. Chem. Eng. J. 2020, 398, 125631. [CrossRef] 165. Shinkle,A.A.;Sleightholme,A.E.S.;Thompson,L.T.;Monroe,C.W.ElectrodeKineticsinNon-AqueousVanadiumAcetylacetonate Redox Flow Batteries. J. Appl. Electrochem. 2011, 41, 1191–1199. [CrossRef] 166. Ding,Y.;Zhang,C.;Zhang,L.;Zhou,Y.;Yu,G.MolecularEngineeringofOrganicElectroactiveMaterialsforRedoxFlowBatteries. Chem. Soc. Rev. 2018, 47, 69–103. [CrossRef] 167. Sun,C.-N.;Mench,M.M.;Zawodzinski,T.A.HighPerformanceRedoxFlowBatteries:AnAnalysisoftheUpperPerformance Limits of Flow Batteries Using Non-Aqueous Solvents. Electrochim. Acta 2017, 237, 199–206. [CrossRef] 168. Sevov,C.S.;Fisher,S.L.;Thompson,L.T.;Sanford,M.S.Mechanism-BasedDevelopmentofaLow-Potential,Soluble,andCyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc. 2016, 138, 15378–15384. [CrossRef] [PubMed] 169. Chalamala,B.R.;Soundappan,T.;Fisher,G.R.;Anstey,M.R.;Viswanathan,V.V.;Perry,M.L.RedoxFlowBatteries:AnEngineering Perspective. Proc. IEEE 2014, 102, 976–999. [CrossRef] 170. Li,M.;Rhodes,Z.;Cabrera-Pardo,J.R.;Minteer,S.D.RecentAdvancementsinRationalDesignofNon-AqueousOrganicRedox Flow Batteries. Sustain. Energy Fuels 2020, 4, 4370–4389. [CrossRef] 171. Matsuda,Y.;Tanaka,K.;Okada,M.;Takasu,Y.;Morita,M.ARechargeableRedoxBatteryUtilizingRutheniumComplexeswith Non-Aqueous Organic Electrolyte. J. Appl. Electrochem. 1988, 18, 909–914. [CrossRef] 172. Milshtein,J.D.;Kaur,A.P.;Casselman,M.D.;Kowalski,J.A.;Modekrutti,S.;Zhang,P.L.;HarshaAttanayake,N.;Elliott,C.F.; Parkin, S.R.; Risko, C.; et al. High Current Density, Long Duration Cycling of Soluble Organic Active Species for Non-Aqueous Redox Flow Batteries. Energy Environ. Sci. 2016, 9, 3531–3543. [CrossRef] 173. Yuan,J.;Zhang,C.;Liu,T.;Zhen,Y.;Pan,Z.-Z.;Li,Y.Two-DimensionalMetal-OrganicFrameworkNanosheets-ModifiedPorous Separator for Non-Aqueous Redox Flow Batteries. J. Membr. Sci. 2020, 612, 118463. [CrossRef] 174. Armstrong, C.G.; Hogue, R.W.; Toghill, K.E. Characterisation of the Ferrocene/Ferrocenium Ion Redox Couple as a Model Chemistry for Non-Aqueous Redox Flow Battery Research. J. Electroanal. Chem. 2020, 872, 114241. [CrossRef] 175. Li, Y.; Geysens, P.; Zhang, X.; Sniekers, J.; Fransaer, J.; Binnemans, K.; Vankelecom, I.F.J. Cerium-Containing Complexes for Low-Cost, Non-Aqueous Redox Flow Batteries (RFBs). J. Power Sources 2020, 450, 227634. [CrossRef] 176. Kosswattaarachchi,A.M.;Cook,T.R.Concentration-DependentCharge-DischargeCharacteristicsofNon-AqueousRedoxFlow Battery Electrolyte Combinations. Electrochim. Acta 2018, 261, 296–306. [CrossRef] 177. Sleightholme,A.E.S.;Shinkle,A.A.;Liu,Q.;Li,Y.;Monroe,C.W.;Thompson,L.T.Non-AqueousManganeseAcetylacetonate Electrolyte for Redox Flow Batteries. J. Power Sources 2011, 196, 5742–5745. [CrossRef] 178. Liu,Q.;Shinkle,A.A.;Li,Y.;Monroe,C.W.;Thompson,L.T.;Sleightholme,A.E.S.Non-AqueousChromiumAcetylacetonate Electrolyte for Redox Flow Batteries. Electrochem. Commun. 2010, 12, 1634–1637. [CrossRef] 179. Liu, Q.; Sleightholme, A.E.S.; Shinkle, A.A.; Li, Y.; Thompson, L.T. Non-Aqueous Vanadium Acetylacetonate Electrolyte for Redox Flow Batteries. Electrochem. Commun. 2009, 11, 2312–2315. [CrossRef] 180. Kaur,A.P.;Holubowitch,N.E.;Ergun,S.;Elliott,C.F.;Odom,S.A.AHighlySolubleOrganicCatholyteforNon-AqueousRedox Flow Batteries. Energy Technol. 2015, 3, 476–480. [CrossRef] 181. Su, L.; Ferrandon, M.; Kowalski, J.A.; Vaughey, J.T.; Brushett, F.R. Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform. J. Electrochem. Soc. 2014, 161, A1905–A1914. [CrossRef] 182. Mun, J.; Lee, M.-J.; Park, J.-W.; Oh, D.-J.; Lee, D.-Y.; Doo, S.-G. Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2′-Bipyridine) Complex Electrolyte. Electrochem. Solid-State Lett. 2012, 15, A80. [CrossRef] 183. Hamelet,S.;Tzedakis,T.;Leriche,J.-B.;Sailler,S.;Larcher,D.;Taberna,P.-L.;Simon,P.;Tarascon,J.-M.Non-AqueousLi-Based Redox Flow Batteries. J. Electrochem. Soc. 2012, 159, A1360–A1367. [CrossRef] 184. Li,Z.;Li,S.;Liu,S.;Huang,K.;Fang,D.;Wang,F.;Peng,S.ElectrochemicalPropertiesofanAll-OrganicRedoxFlowBattery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide. Electrochem. Solid-State Lett. 2011, 14, A171. [CrossRef]PDF Image | PNNL Vanadium Redox Flow Battery Stack
PDF Search Title:
PNNL Vanadium Redox Flow Battery StackOriginal File Name Searched:
energies-14-05643-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)