REDOX FLOW BATTERIES Chapter 6

PDF Publication Title:

REDOX FLOW BATTERIES Chapter 6 ( redox-flow-batteries-chapter-6 )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Chapter 6 Redox Flow Batteries [17] P. C. Butler, P. A. Eidler, P. G. Grimes, S. E. Klassen, and R. C. Miles. “Advanced Battery Systems.” Sandia National Laboratories. Report SAND2000-0893. (2000). [18] D. J. Eustace. “Bromine Complexation in Zinc-Bromine Circulating Batteries.” J. Electrochem. Soc. 528 528-532 (1980). [19] A. Leo. “Zinc Bromide Battery Development.” Energy Research Corporation for Electric Power Research Institute, Project 635-3, EM-4425, (1986). [20] H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier B.V,T. Amsterdam, San Diego, Oxford, London, 2004. [21] Luo et al. J. Membrane Sci. 555 429–454 (2018). [22] V. Viswanathan, A. Crawford, D. Stephenson, S. Kim W. Wang, B. Li, G. Coffey, E. Thomsen, G. Graff, P. Balducci, M. Kintner-Meyer and V. Sprenkle. “Cost and Performance Model for Redox Flow Batteries.” J. Power Sources 247 1040-1051 (2014). [23] C. Minke, U. Kunz, T. Turek. “Techno-economic assessment of novel vanadium redox fow batteries with large-area cells.” J. Power Sources 361 105-114 (2017). [24] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath. “Alternative Polymer Systems for Proton Exchange Membranes.” Chem. Rev. 104 4587-4612 (2004). [25] T. Davis, D. Genders, and D. Pletcher. A First Course in Ion Permeable Membranes. Romsey, England: Electrochemical Consultancy, 1997. [26] A. Shibata and K. Sato. “Development of vanadium redox flow battery for electricity storage.” Power Eng. J. 13 130-135 (1999). [27] H. Prifti, A. Parasuraman, S. Windari, T. M. Lim, and M. Skyllas-Kazacos. “Membranes for Redox Flow Battery Applications.” Membranes 2 275-306 (2012). [28] T. Mohammadi and M. Skyllas-Kazacos. “Evaluation of the chemical stability of some membranes in vanadium solution.” J. Appl. Electrochem. 27 153-160 (1997). [29] J. Luo, B. Hu, C. Debruler, and T. L. Liu. “A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries.” Angew. Chem. Int. Ed. 57 231-235 (2018). [30] K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz, and M. P. Marshak. “Alkaline Quinone Flow Battery.” Science, 349 1529-1532 (2015). [31] E. J. Park and Y. S. Kim. “Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: synthesis, properties, and performance – a topical review.” J. Mater. Chem. A 6 15456-15477 (2018). [32] C. G. Arges and L. Zhang. “Anion Exchange Membranes’ Evolution toward High Hydroxide Ion Conductivity and Alkaline Resiliency.” ACS Appl. Energy Mater., 1 2991- 3012 (2018). [33] “Zcell - Residential” https://redflow.com/products/redflow-zcell/. Accessed July, 20, 2020. 12

PDF Image | REDOX FLOW BATTERIES Chapter 6

PDF Search Title:

REDOX FLOW BATTERIES Chapter 6

Original File Name Searched:

ESHB_Ch6_RedoxFlow_Small.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)