PDF Publication Title:
Text from PDF Page: 249
(115) Mader, M. J. A Mathematical Model of a Zn?Br[Sub 2] Cell on Charge. Journal of The Electrochemical Society 1986, 133 (7), 1297. (116) Redflow Energy Storage Solutions http://redflow.com/ (accessed Jun 19, 2017). (117) Rechargeable Metal Halide Battery. 1971. (118) Hruska, L. W.; Savinell, R. F. Investigation of Factors Affecting Performance of the Iron-Redox Battery. Journal of The Electrochemical Society 1981, 128 (1), 18. (119) Sanz, L.; Lloyd, D.; Magdalena, E.; Palma, J.; Kontturi, K. Description and Performance of a Novel Aqueous All-Copper Redox Flow Battery. Journal of Power Sources 2014, 268, 121–128. (120) Lloyd, D.; Vainikka, T.; Kontturi, K. The Development of an All Copper Hybrid Redox Flow Battery Using Deep Eutectic Solvents. Electrochimica Acta 2013, 100, 18–23. (121) Sanz, L.; Palma, J.; García-Quismondo, E.; Anderson, M. The Effect of Chloride Ion Complexation on Reversibility and Redox Potential of the Cu(II)/Cu(I) Couple for Use in Redox Flow Batteries. Journal of Power Sources 2013, 224, 278–284. (122)Raju, T.; Basha, C. A. Process Parameters and Kinetics for the Electrochemical Generation of Cerium(IV) Methanesulphonate from Cerium(III) Methanesulphonate. Industrial & Engineering Chemistry Research 2008, 47 (22), 8947–8952. (123) Matsuda, Y.; Tanaka, K.; Okada, M.; Takasu, Y.; Morita, M.; Matsumura- Inoue, T. A Rechargeable Redox Battery Utilizing Ruthenium Complexes with Non-Aqueous Organic Electrolyte. Journal of Applied Electrochemistry 18 (6), 909–914. (124) Chakrabarti, M. H.; Dryfe, R. A. W.; Roberts, E. P. L. Evaluation of Electrolytes for Redox Flow Battery Applications. Electrochimica Acta 2007, 52 (5), 2189–2195. (125) Yamamura, T.; Shiokawa, Y.; Yamana, H.; Moriyama, H. Electrochemical Investigation of Uranium ?-Diketonates for All-Uranium Redox Flow Battery. Electrochimica Acta 2002, 48 (1), 43–50. (126) Liu, Q.; Sleightholme, A. E. S.; Shinkle, A. A.; Li, Y.; Thompson, L. T. Non- Aqueous Vanadium Acetylacetonate Electrolyte for Redox Flow Batteries. Electrochemistry Communications 2009, 11 (12), 2312–2315. (127) Liu, Q.; Shinkle, A. A.; Li, Y.; Monroe, C. W.; Thompson, L. T.; Sleightholme, A. E. S. Non-Aqueous Chromium Acetylacetonate Electrolyte for Redox Flow Batteries. Electrochemistry Communications 2010, 12 (11), 1634–1637. (128) Sleightholme, A. E. S.; Shinkle, A. A.; Liu, Q.; Li, Y.; Monroe, C. W.; Thompson, L. T. Non-Aqueous Manganese Acetylacetonate Electrolyte for Redox Flow Batteries. Journal of Power Sources 2011, 196 (13), 5742–5745. (129) Sleightholme, A. E. S.; Shinkle, A. A.; Liu, Q.; Li, Y.; Monroe, C. W.; Thompson, L. T. Non - Aqueous Manganese Acetylacetonate Electrolyte for Redox Flow Batteries. Journal of Power Sources 2011, 196, 5742–5745. (130)Kraytsberg, A.; Ein-Eli, Y. Review on Li?Air Batteries?Opportunities, 248PDF Image | Redox Flow Batteries Vanadium to Earth Quinones
PDF Search Title:
Redox Flow Batteries Vanadium to Earth QuinonesOriginal File Name Searched:
FJVG_TESIS.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)