
PDF Publication Title:
Text from PDF Page: 255
(199) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Letters 2011, 11 (7), 3026– 3033. (200) Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 2010, 257 (3), 887–898. (201) Pan, X.; Yang, M.-Q.; Fu, X.; Zhang, N.; Xu, Y.-J. Defective TiO2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications. Nanoscale 2013, 5 (9), 3601. (202) Morgan, B. J.; Watson, G. W. Intrinsic N-Type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations. Journal of Physical Chemistry C 2010, 114 (5), 2321–2328. (203) Wang, S.; Zhao, X.; Cochell, T.; Manthiram, A. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries. Journal of Physical Chemistry Letters 2012, 3 (16), 2164–2167. (204) Wang , S.; Iyyamperumal , E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen. Angewandte Chemie International Edition 2011, 50 (49), 11756–11760. (205) Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science (New York, N.Y.) 2009, 323 (5915), 760–764. (206) Rao, C. V.; Cabrera, C. R.; Ishikawa, Y. In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters 2010, 1 (18), 2622– 2627. (207) Yu, D.; Nagelli, E.; Du, F.; Dai, L. Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. The Journal of Physical Chemistry Letters 2010, 1 (14), 2165–2173. (208) Kim, K. J.; Kim, Y.-J. J.; Kim, J.-H. H.; Park, M.-S. S. The Effects of Surface Modification on Carbon Felt Electrodes for Use in Vanadium Redox Flow Batteries. Materials Chemistry and Physics 2011, 131 (1–2), 547–553. (209) Kabir, H.; Gyan, I. O.; Francis Cheng, I. Electrochemical Modification of a Pyrolytic Graphite Sheet for Improved Negative Electrode Performance in the Vanadium Redox Flow Battery. Journal of Power Sources 2017, 342, 31–37. (210) Liu, T.; Li, X.; Xu, C.; Zhang, H. Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density. ACS Applied Materials & Interfaces 2017, acsami.6b14478. (211) Vohra, M. S.; Selimuzzaman, S. M.; Al‐Suwaiyan, M. S. NH4 +‐NH3 Removal from Simulated Wastewater Using UV‐TiO2 Photocatalysis: Effect of Co‐pollutants and PH. Environmental Technology 2010, 31 (6), 641–654. 254PDF Image | Redox Flow Batteries Vanadium to Earth Quinones
PDF Search Title:
Redox Flow Batteries Vanadium to Earth QuinonesOriginal File Name Searched:
FJVG_TESIS.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
| CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |