
PDF Publication Title:
Text from PDF Page: 257
2017, 341, 318–326. (227) Kim, K. J.; Park, M.-S.; Kim, Y.-J.; Kim, J. H.; Dou, S. X.; Skyllas-Kazacos, M.; Srinivasan, M. P.; Yan, Q.; Madhavi, S.; Sprenkle, V.; et al. A Technology Review of Electrodes and Reaction Mechanisms in Vanadium Redox Flow Batteries. 2015, 3 (33), 16913–16933. (228) Liu, M.; Xiang, Z.; Piao, J.; Shi, J.; Liang, Z. Electrochemistry of Vanadium Redox Couples on Nitrogen-Doped Carbon. Electrochimica Acta 2018, 259, 687–693. (229) Jin, J.; Fu, X.; Liu, Q.; Liu, Y.; Wei, Z.; Niu, K.; Zhang, J. Identifying the Active Site in Nitrogen-Doped Graphene for the VO 2+ /VO 2 + Redox Reaction. ACS Nano 2013, 7 (6), 4764–4773. (230) Kim, J.; Lim, H.; Jyoung, J.-Y.; Lee, E.-S.; Yi, J. S.; Lee, D. Effects of Doping Methods and Kinetic Relevance of N and O Atomic Co-Functionalization on Carbon Electrode for V(IV)/V(V) Redox Reactions in Vanadium Redox Flow Battery. Electrochimica Acta 2017, 245, 724–733. (231)Xu, C.; Yang, X.; Li, X.; Liu, T.; Zhang, H. Ultrathin Free-Standing Electrospun Carbon Nanofibers Web as the Electrode of the Vanadium Flow Batteries. Journal of Energy Chemistry 2017, 26 (4), 730–737. (232) Wang, W. H.; Wang, X. D. Investigation of Ir-Modified Carbon Felt as the Positive Electrode of an All-Vanadium Redox Flow Battery. Electrochimica Acta 2007, 52 (24), 6755–6762. (233) Yue, L.; Li, W.; Sun, F.; Zhao, L.; Xing, L. Highly Hydroxylated Carbon Fibres as Electrode Materials of All-Vanadium Redox Flow Battery. Carbon 2010, 48 (11), 3079–3090. (234) Yun, N.; Park, J. J.; Park, O. O.; Lee, K. B.; Yang, J. H. Electrocatalytic Effect of NiO Nanoparticles Evenly Distributed on a Graphite Felt Electrode for Vanadium Redox Flow Batteries. Electrochimica Acta 2018, 278, 226–235. (235) Bayeh, A. W.; Kabtamu, D. M.; Chang, Y.-C.; Chen, G.-C.; Chen, H.-Y.; Lin, G.-Y.; Liu, T.-R.; Wondimu, T. H.; Wang, K.-C.; Wang, C.-H. Synergistic Effects of a TiNb 2 O 7 –reduced Graphene Oxide Nanocomposite Electrocatalyst for High-Performance All-Vanadium Redox Flow Batteries. Journal of Materials Chemistry A 2018, 6 (28), 13908–13917. (236) Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Recent Progress in Redox Flow Battery Research and Development. Advanced Functional Materials 2013, 23 (8), 970–986. (237) Perry, M. L.; Weber, A. Z. Advanced Redox-Flow Batteries: A Perspective. Journal of The Electrochemical Society 2016, 163 (1), A5064–A5067. (238) Shah, A. A.; Watt-Smith, M. J.; Walsh, F. C. A Dynamic Performance Model for Redox-Flow Batteries Involving Soluble Species. Electrochimica Acta 2008, 53 (27), 8087–8100. (239) Watt-Smith, M. J.; Ridley, P.; Wills, R. G. A.; Shah, A. A.; Walsh, F. C. The Importance of Key Operational Variables and Electrolyte Monitoring to the Performance of an All Vanadium Redox Flow Battery. Journal of Chemical Technology & Biotechnology 2013, 88 (1), 126–138. (240) Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. 256PDF Image | Redox Flow Batteries Vanadium to Earth Quinones
PDF Search Title:
Redox Flow Batteries Vanadium to Earth QuinonesOriginal File Name Searched:
FJVG_TESIS.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
| CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |