PDF Publication Title:
Text from PDF Page: 259
1424. (256) Oh, S. H.; Lee, C.-W.; Chun, D. H.; Jeon, J.-D.; Shim, J.; Shin, K. H.; Yang, J. H.; Hennig, R. G.; Abruňa, H. D. A Metal-Free and All-Organic Redox Flow Battery with Polythiophene as the Electroactive Species. J. Mater. Chem. A 2014, 2 (47), 19994–19998. (257) Xu, Y.; Wen, Y.-H.; Cheng, J.; Cao, G.-P.; Yang, Y.-S. A Study of Tiron in Aqueous Solutions for Redox Flow Battery Application. Electrochimica Acta 2010, 55 (3), 715–720. (258) Huang, J.; Cheng, L.; Assary, R. S.; Wang, P.; Xue, Z.; Burrell, A. K.; Curtiss, L. A.; Zhang, L. Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries. Advanced Energy Materials 2015, 5 (6), 1401782. (259) Liu, T.; Wei, X.; Nie, Z.; Sprenkle, V.; Wang, W. A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Advanced Energy Materials 2016, 6 (3), 1501449. (260)Wei, X.; Xu, W.; Huang, J.; Zhang, L.; Walter, E.; Lawrence, C.; Vijayakumar, M.; Henderson, W. A.; Liu, T.; Cosimbescu, L.; et al. Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. Angewandte Chemie International Edition 2015, 54 (30), 8684–8687. (261) Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L. A Comparative Study of All-Vanadium and Iron-Chromium Redox Flow Batteries for Large-Scale Energy Storage. Journal of Power Sources 2015, 300, 438–443. (262) Bachman, J. E.; Curtiss, L. A.; Assary, R. S. Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory. The Journal of Physical Chemistry A 2014, 118 (38), 8852–8860. (263)May Quan; Daniel Sanchez; Mark F. Wasylkiw, and; Smith*, D. K. Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones. 2007. (264) Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J.; et al. Alkaline Quinone Flow Battery. Science (New York, N.Y.) 2015, 349 (6255), 1529–1532. (265) Zhang, S.; Li, X.; Chu, D. An Organic Electroactive Material for Flow Batteries. Electrochimica Acta 2016, 190, 737–743. (266) Electrochemical Investigation of Quinone-Hydroquinone Couples in Molten Acetamide at 85°C. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1985, 187 (1), 187–195. (267) Hale, J. M.; Parsons, R. Reduction of P-Quinones at a Dropping Mercury Electrode. Transactions of the Faraday Society 1963, 59 (0), 1429. (268) Understanding the Linear Correlation between Diffusion Coefficient and Molecular Weight. A Model to Estimate Diffusion Coefficients in Acetonitrile Solutions. Electrochemistry Communications 2011, 13 (2), 129–132. (269) Effect of Oxygen Plasma Treatment on the Electrochemical Performance of the Rayon and Polyacrylonitrile Based Carbon Felt for the Vanadium Redox Flow Battery Application. Journal of Power Sources 2016, 332, 240–248. 258PDF Image | Redox Flow Batteries Vanadium to Earth Quinones
PDF Search Title:
Redox Flow Batteries Vanadium to Earth QuinonesOriginal File Name Searched:
FJVG_TESIS.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)