Aqueous Rechargeable Sodium-Ion Batteries Hydrogel

PDF Publication Title:

Aqueous Rechargeable Sodium-Ion Batteries Hydrogel ( aqueous-rechargeable-sodium-ion-batteries-hydrogel )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Batteries 2022, 8, 180 19 of 23 References Author Contributions: Conceptualization, W.C. and Y.C.; formal analysis, M.Y. and X.G.; investiga- tion, M.Y., J.L. and J.C.; writing—original draft preparation, M.Y.; writing—review and editing, M.Y., J.L., X.G., J.C., Y.C. and W.C.; visualization, X.G.; supervision, W.C.; funding acquisition, W.C. All authors have read and agreed to the published version of the manuscript. Funding: This review was supported by the National Natural Science Foundation of China (2227912129), Joint Fund of Scientific and Technological Research and Development Program of Henan Province (222301420009), and Zhengzhou University. Data Availability Statement: Not applicable. Acknowledgments: We also thank the financial support from the National Natural Science Founda- tion of China (2227912129), Joint Fund of Scientific and Technological Research and Development Program of Henan Province (222301420009), and Zhengzhou University. Conflicts of Interest: The authors declare no conflict of interest. 1. Pan, H.; Hu, Y.-S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [CrossRef] 2. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [CrossRef] [PubMed] 3. Guo, X.; Li, X.; Xu, Y.; Chen, J.; Lv, M.; Yang, M.; Chen, W. Understanding the Accelerated Sodium-Ion-Transport Mechanism of an Interfacial Modified Polyacrylonitrile Separator. J. Phys. Chem. C 2022, 126, 8238–8247. [CrossRef] 4. Song, K.; Liu, J.; Dai, H.; Zhao, Y.; Sun, S.; Zhang, J.; Qin, C.; Yan, P.; Guo, F.; Wang, C. Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. Chem 2021, 7, 2684–2694. [CrossRef] 5. Wan, Y.; Song, K.; Chen, W.; Qin, C.; Zhang, X.; Zhang, J.; Dai, H.; Hu, Z.; Yan, P.; Liu, C. Ultra-High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angew. Chem. 2021, 133, 11582–11587. [CrossRef] 6. Chen, X.; Fang, Y.; Lu, H.; Li, H.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Cao, Y. Microstructure-dependent charge/discharge behaviors of hollow carbon spheres and its implication for sodium storage mechanism on hard carbon anodes. Small 2021, 17, 2102248. [CrossRef] 7. Zhao, A.; Yuan, T.; Li, P.; Liu, C.; Cong, H.; Pu, X.; Chen, Z.; Ai, X.; Yang, H.; Cao, Y. A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy 2022, 91, 106680. [CrossRef] 8. Fedoseeva, Y.V.; Shlyakhova, E.V.; Stolyarova, S.G.; Vorfolomeeva, A.A.; Grebenkina, M.A.; Makarova, A.A.; Shubin, Y.V.; Okotrub, A.V.; Bulusheva, L.G. Brominated Porous Nitrogen-Doped Carbon Materials for Sodium-Ion Storage. Batteries 2022, 8, 114. [CrossRef] 9. Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.-Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6, eaba4098. [CrossRef] 10. Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [CrossRef] 11. Liu, Z.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X.; Huang, Z.; Zhi, C. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180–232. [CrossRef] [PubMed] 12. Bin, D.; Wang, F.; Tamirat, A.G.; Suo, L.; Wang, Y.; Wang, C.; Xia, Y. Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703008. [CrossRef] 13. Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 2017, 3, 348–362. [CrossRef] 14. Qiu, S.; Xu, Y.; Wu, X.; Ji, X. Prussian blue analogues as electrodes for aqueous monovalent ion batteries. Electrochem. Energy Rev. 2022, 5, 242–262. [CrossRef] 15. Li, W.; Dahn, J.R.; Wainwright, D.S. Rechargeable lithium batteries with aqueous electrolytes. Science 1994, 264, 1115–1118. [CrossRef] 16. Jin, T.; Ji, X.; Wang, P.F.; Zhu, K.; Zhang, J.; Cao, L.; Chen, L.; Cui, C.; Deng, T.; Liu, S. High-Energy Aqueous Sodium-Ion Batteries. Angew. Chem. 2021, 133, 12050–12055. [CrossRef] 17. Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Aqueous rechargeable sodium ion batteries: Developments and prospects. Mater. Today Energy 2020, 17, 100432. [CrossRef] 18. You, Y.; Sang, Z.; Liu, J. Recent developments on aqueous sodium-ion batteries. Mater. Technol. 2016, 31, 501–509. [CrossRef] 19. Boyd, S.; Augustyn, V. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg. Chem. Front. 2018, 5, 999–1015. [CrossRef] 20. Larcher, D.; Tarascon, J.-M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [CrossRef]

PDF Image | Aqueous Rechargeable Sodium-Ion Batteries Hydrogel

PDF Search Title:

Aqueous Rechargeable Sodium-Ion Batteries Hydrogel

Original File Name Searched:

batteries-08-00180-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)