logo

Cathode Materials for Advanced Sodium-Ion Batteries

PDF Publication Title:

Cathode Materials for Advanced Sodium-Ion Batteries ( cathode-materials-advanced-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

Energies 2020, 13, 5729 10 of 12 electrodes as a function of SOCs during the initial cycle. (b) The Mn L-edge XAS spectra (TFY mode) collected on NaMMO electrodes as a function of SOCs after 5 and 10 cycles. Author Contributions: C.C. designed and performed the experiments; C.C. wrote the original manuscript; C.C., N.Z. and T.Y. conceived the XAS measurement; M.D., J.M. and K.D. contributed to the discussion and analysis on the XAS results; L.Z. and J.G. revised the paper and supervised the work. All authors have read and agreed to the published version of the manuscript. Funding: This research received no external funding. Acknowledgments: This work is supported by Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, the National Natural Science Foundation of China (11905154), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA550004), the Natural Science Foundation of Jiangsu Province (BK20190814). The authors thank SSRF (beamline 02B02) TLS (beamline 20A) and NSRL (beamline 11U) for the allocation of synchrotron beamtime. Conflicts of Interest: The authors declare no conflict of interest. References 1. Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [CrossRef] 2. Yu, L.; Wang, L.P.; Liao, H.; Wang, J.; Feng, Z.; Lev, O.; Loo, J.S.C.; Sougrati, M.T.; Xu, Z.J. Understanding fundamentals and reaction mechanisms of electrode materials for Na-ion batteries. Small 2018, 14, 1703338. [CrossRef] 3. Pan, H.; Hu, Y.-S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [CrossRef] 4. Brant, W.R.; Mogensen, R.; Colbin, S.; Ojwang, D.O.; Schmid, S.; Häggström, L.; Ericsson, T.; Jaworski, A.; Pell, A.J.; Younesi, R. Selective control of composition in prussian white for enhanced material properties. Chem. Matter. 2019, 31, 7203–7211. [CrossRef] 5. Chen, M.; Liu, Q.; Wang, S.-W.; Wang, E.; Guo, X.; Chou, S.-L. High-abundance and low-cost metal-based cathode materials for Sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609. [CrossRef] 6. Liu, Q.; Hu, Z.; Chen, M.; Zou, C.; Jin, H.; Wang, S.; Chou, S.-L.; Liu, Y.; Dou, S.-X. The cathode choice for commercialization of Sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530. [CrossRef] 7. Han, M.H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102. [CrossRef] 8. Ma, C.; Alvarado, J.; Xu, J.; Clément, R.J.; Kodur, M.; Tong, W.; Grey, C.P.; Meng, Y.S. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 2017, 139, 4835–4845. [CrossRef] 9. Chen, M.; Wang, E.; Liu, Q.; Guo, X.; Chen, W.; Chou, S.-L.; Dou, S.-X. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Stor. Mater. 2019, 19, 163–178. [CrossRef] 10. Billaud, J.; Singh, G.; Armstrong, A.R.; Gonzalo, E.; Roddatis, V.; Armand, M.; Rojo, T.; Bruce, P.G. Na0.67Mn1 − xMgxO2 (0 ≤ x ≤ 0.2): A high capacity cathode for sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1387–1391. [CrossRef] 11. Wang, P.-F.; You, Y.; Yin, Y.-X.; Guo, Y.-G. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Adv. Energy Mater. 2018, 8, 1701912. [CrossRef] 12. Lee, W.; Yun, S.; Li, H.; Kim, J.; Lee, H.; Kwon, K.; Lee, J.Y.; Choi, Y.-M.; Yoon, W.-S. Anionic redox chemistry as a clue for understanding the structural behavior in layered cathode materials. Small 2020, 16, 1905875. [CrossRef] [PubMed] 13. Ceder, G.; Chiang, Y.M.; Sadoway, D.R.; Aydinol, M.K.; Jang, Y.I.; Huang, B. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 1998, 392, 694–696. [CrossRef]

PDF Image | Cathode Materials for Advanced Sodium-Ion Batteries

cathode-materials-advanced-sodium-ion-batteries-010

PDF Search Title:

Cathode Materials for Advanced Sodium-Ion Batteries

Original File Name Searched:

charge-compensation-sodium-ion-battery.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP