Cathode Materials for Advanced Sodium-Ion Batteries

PDF Publication Title:

Cathode Materials for Advanced Sodium-Ion Batteries ( cathode-materials-advanced-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Energies 2020, 13, 5729 12 of 12 32. Yoon, W.-S.; Chung, K.-Y.; Oh, K.-H.; Kim, K.-B. Changes in electronic structure of the electrochemically Li-ion deintercalated LiMn2O4 system investigated by soft X-ray absorption spectroscopy. J. Power Sources 2003, 119–121, 706–709. [CrossRef] 33. Cheng, C.; Li, S.; Liu, T.; Xia, Y.; Chang, L.-Y.; Yan, Y.; Ding, M.; Hu, Y.; Wu, J.; Guo, J.; et al. Elucidation of anionic and cationic redox reactions in a prototype sodium-layered oxide cathode. ACS Appl. Mater. Interfaces 2019, 11, 41304–41312. [CrossRef] 34. Ding, M.; Cheng, C.; Wei, Q.; Hu, Y.; Yan, Y.; Dai, K.; Mao, J.; Guo, J.; Zhang, L.; Mai, L. Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism. J. Energy Chem. 2021, 53, 124–131. [CrossRef] 35. Qiao, R.; Wang, Y.; Olalde-Velasco, P.; Li, H.; Hu, Y.-S.; Yang, W. Direct evidence of gradient Mn(II) evolution at charged states in LiNi0.5Mn1.5O4 electrodes with capacity fading. J. Power Sources 2015, 273, 1120–1126. [CrossRef] 36. Lee, J.; Seo, D.-H.; Balasubramanian, M.; Twu, N.; Li, X.; Ceder, G. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy Environ. Sci. 2015, 8, 3255–3265. [CrossRef] 37. Pieczonka, N.P.W.; Liu, Z.; Lu, P.; Olson, K.L.; Moote, J.; Powell, B.R.; Kim, J.-H. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 2013, 117, 15947–15957. [CrossRef] 38. Achkar, A.J.; Regier, T.Z.; Wadati, H.; Kim, Y.J.; Zhang, H.; Hawthorn, D.G. Bulk sensitive x-ray absorption spectroscopy free of self-absorption effects. Phys. Rev. B 2011, 83, 081106. [CrossRef] 39. de Groot, F.M.F. Differences between L3 and L2 X-ray absorption spectra. Phys. B Condens. Matter 1995, 208–209, 15–18. [CrossRef] 40. de Groot, F.M.F.; Grioni, M.; Fuggle, J.C.; Ghijsen, J.; Sawatzky, G.A.; Petersen, H. Oxygen 1s x-ray-absorption edges of transition-metal oxides. Phys. Rev. B 1989, 40, 5715–5723. [CrossRef] 41. Yang, W.; Devereaux, T.P. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 2018, 389, 188–197. [CrossRef] 42. Hu, Y.; Liu, T.; Cheng, C.; Yan, Y.; Ding, M.; Chan, T.-S.; Guo, J.; Zhang, L. Quantification of anionic redox chemistry in a prototype Na-Rich layered oxide. ACS Appl. Mater. Interfaces 2020, 12, 3617–3623. [CrossRef] [PubMed] 43. Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W.E.; et al. High Reversibility of Lattice Oxygen Redox Quantified by Direct Bulk Probes of both Anionic and Cationic Redox Reactions. Joule 2019, 3, 518–541. [CrossRef] 44. Wu, J.; Zhuo, Z.; Rong, X.; Dai, K.; Lebens-H., Z.; Sallis, S.; Pan, F.; Piper, L.F.J.; Liu, G.; Chuang, Y.-D.; et al. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Sci. Adv. 2020, 6, eaaw3871. [CrossRef] [PubMed] 45. Li, Q.; Yao, Z.; Lee, E.; Xu, Y.; Thackeray, M.M.; Wolverton, C.; Dravid, V.P.; Wu, J. Dynamic imaging of crystalline defects in lithium-manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 2019, 10, 1692. [CrossRef] 46. Simonelli, L.; Sorrentino, A.; Marini, C.; Ramanan, N.; Heinis, D. Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes. J. Phys. Chem. Lett. 2019, 10, 3359. [CrossRef] Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PDF Image | Cathode Materials for Advanced Sodium-Ion Batteries

PDF Search Title:

Cathode Materials for Advanced Sodium-Ion Batteries

Original File Name Searched:

charge-compensation-sodium-ion-battery.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)