logo

cathode materials for sustainable sodium‐ion batteries

PDF Publication Title:

cathode materials for sustainable sodium‐ion batteries ( cathode-materials-sustainable-sodium‐ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 014

113 C. Delmas, Sodium and sodium-ion batteries: 50 Years of research. Adv. 141. Energy Mater. 8, 170 (2018) 114. Hofstra, A. H. & Kreiner, D. C. Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. US Geological 142. Survey (2020). 115. Stocks, J., Blunden, J. R. & Down, C. G. Mining and the environment. Min- ing Mag. vol. 131 (1974). 143. 116. Nishimatsu, Y. Mining Engineering and Mineral Transportation. in Civil Engineering - Vol. II - Encyclopedia of Life Support Systems 132–154 (2009). 144. 117. Okubo, S. & Yamatomi, J. Underground Mining Methods and Equipment. in Civil Engineering - Vol. II - Encyclopedia of Life Support Systems (2009). 118. Yamatomi, J. & Okubo, S. Surface Mining Methods and Equipment. in Civil 145. Engineering - Vol. II - Encyclopedia of Life Support Systems 155–170 (2009). 119. Watson, I. Methodology Report 2017. Responsible Min. Index (2018). 146. 120. É. Lèbre et al., The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 1–8 (2020) 121. T. Watari, K. Nansai, K. Nakajima, Review of critical metal dynamics to 147. 2050 for 48 elements. Resour. Conserv. Recycl. 155, 104669 (2020) 122. C. Helbig, A. Thorenz, A. Tuma, Quantitative assessment of dissipative losses of 18 metals. Resour. Conserv. Recycl. 153, 104537 (2020) 123. T. Watari, K. Nansai, K. Nakajima, Major metals demand, supply, and envi- 148. ronmental impacts to 2100: A critical review. Resour. Conserv. Recycl. 164, 105107 (2021) 124. D.H.S. Tan, P. Xu, Z. Chen, Enabling sustainable critical materials for bat- 149. tery storage through efficient recycling and improved design: A perspective. MRS Energy Sustain. 7, 27 (2020) 150. 125. M. Chen et al., Recycling End-of-Life Electric Vehicle Lithium-Ion Batter- ies. Joule 3, 2622–2646 (2019) 126. J. Chen et al., High performance of hexagonal plates P2-Na2/3Fe1/2Mn1/2O2 cathode material synthesized by an improved solid-state method. Mater. 151. Lett. 202, 21–24 (2017) 127. T. Jin et al., Realizing complete solid-solution reaction in high sodium con- tent P2-type cathode for high-performance sodium-ion batteries. Angew. 152. Chemie 132, 14619–14624 (2020) 128. Y. Bai et al., Enhanced sodium ion storage behavior of P2-Type 153. Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces 8, 2857–2865 (2016) 154. 129. T. Liu et al., Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10, 1–7 (2019) 130. L. Gaines, Lithium-ion battery recycling processes: Research towards a 155 sustainable course. Sustain. Mater. Technol. 17, e00068 (2018) 131. E. Geis, Lazarus batteries. Nature 526, S100–S101 (2015) 132. T. Liu et al., Exploring competitive features of stationary sodium ion batteries 156. for electrochemical energy storage. Energy Environ. Sci. 12, 1512–1533 (2019) 133. X. Hu, S.E. Li, Y. Yang, Advanced machine learning approach for lithium- ion battery state estimation in electric vehicles. IEEE Trans. Transp. Elec- trif. 2, 140–149 (2016) 157. 134. M. AttarianShandiz, R. Gauvin, Application of machine learning methods for the prediction of crystal system of cathode materials in lithium-ion bat- 158. teries. Comput. Mater. Sci. 117, 270–278 (2016) 135. G. Houchins, V. Viswanathan, An accurate machine-learning calculator for optimization of Li-ion battery cathodes. J. Chem. Phys. 153, 054124 (2020) 136 V.L. Deringer, Modelling and understanding battery materials with 159. Ma, C. et al. Exploring oxygen activity in the high energy P2-Type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. J. Am. Chem. Soc. 139, 4835–4845 (2017). D.H. Lee, J. Xu, Y.S. Meng, An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 15, 3304–3312 (2013) L. Mn et al., Electrochimica Acta Study on enhancing electrochemical properties of Li in layered. Electrochim. Acta 263, 474–479 (2018) W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto, material with enhanced performance for Na ion batteries. Mater. Lett. 135, 131–134 (2014) Y. Liu et al., Nano Energy sodium-ion batteries: The capacity decay mech- anism and Al2O3 surface modi fi cation. Nano Energy 27, 27–34 (2016) P. Manikandan, D. Ramasubramonian, M.M. Shaijumon, Electrochimica Acta material for sodium-ion batteries. Electrochim. Acta 206, 199–206 (2016) J.W. Somerville, R.A. House, N. Tapia-ruiz, A. Sobkowiak, S. Ramos, Identification and characterisation of high energy density P2-type Na2/3[Ni1/3-y/2Mn2/3-y/2Fey]O2 compounds for Na-ion batteries. Mater. Chem. A 6, 5271–5275 (2018) N. Ni et al., Insights into the dual-electrode characteristics of layered materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2, 17 (2017) Luo, R. et al. Habit plane-driven P2-type manganese-based layered oxide as long cycling cathode for Na-ion batteries. 383, 80–86 (2018). Hemalatha, K., Jayakumar, M. & Prakash, A. S. Influence of the man- ganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1−xO2 cathodes for sodium-ion batteries. 1223–1232 (2018) doi:https://doi.org/10.1039/c7dt04372d. Y. Wang, A study on electrochemical properties of P2-type Na–Mn–Co– Cr–O cathodes for sodium-ion batteries. Inorg. Chem. Front. 5, 577–584 (2018) Kang, W. et al. High-power and long-life sodium-ion batteries. 0–7 (2016) https://doi.org/10.1021/acsami.6b10841. Wang, P. et al. Na+ vacancy disordering promises high-rate Na-ion batteries. 1–10 (2018). F. Hu, X. Jiang, Li-substituted P2-Na0.66LixMn0.5Ti0.5O2 as an advanced cathode material and new ‘‘bi-functional” electrode for symmetric sodium- ion batteries. Adv. Powder Technol. 29, 1049–1053 (2018) C. Li et al., Unraveling the critical role of Ti substitution in P2-NaxLiyMn1− yO2 cathodes for highly reversible oxygen redox chemistry. Chem. Mater. 32, 1054 (2020) T. Lan, W. Wei, S. Xiao, G. He, J. Hong, P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density and structural stability for sodium-ion batteries. J. Mater. Sci. Mater. Electron. 31, 9423–9429 (2020) C. Zhao, Ti substitution facilitating oxygen oxidation in Na2/3Mg1/3Ti1/6Mn1/2O2 cathode. Chemistry 5, 2913–2925 (2019) A. Milewska, Ś Konrad, W. Zaj, J. Molenda, Overcoming transport and elec- trochemical limitations in the high-voltage Na0.67Ni0.33Mn0.67-yTiyO2 (0≤y≤0.33) cathode materials by Ti-doping. J. Power Sources 404, 39–46 (2018) L. Yang et al., Lithium-doping stabilized high-performance P2− P2− Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries. J. Am. I. Hasa, D. Buchholz, S. Passerini, B. Scrosati, J. Hassoun, High perfor- mance Na0.5[Ni 0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries. Adv. Energy Mater. 4, 2–8 (2014) C. Marino, E. Marelli, C. Villevieille, S. Park, N. He, Co-free P2−Free P2− Na0.67Mn0.6Fe0.25Al0.15O2 as promising cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 1, 5960–5967 (2018) Q. Yang et al., Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 cathode mate- rial with suppressed P2–O2 phase transition toward high-performance sodium-ion battery. ACS Appl. Mater. Interfaces 10, 34272–34282 (2018) R. Stoyanova et al., Stabilization of over-stoichiometric Mn4+ in layered Na2/3MnO2. J. Solid State Chem. 183, 1372–1379 (2010) machine-learning-driven atomistic simulations. J. Phys. Energy 2, 041003 (2020) Chem. Soc. 141, 6680–6689 (2019) 137. M. Aykol et al., Perspective—Combining physics and machine learning to 160. predict battery lifetime. J. Electrochem. Soc. 168, 030525 (2021) 138. Clément, R. J. & Soc, J. E. Review — Manganese-Based P2-Type Tran- sition Metal Oxides as Sodium-Ion Battery Cathode Materials. (2015) 161. doi:https://doi.org/10.1149/2.0201514jes. 139. Liu, H., Gao, X. & Hou, H. Manganese-based layered oxide cathodes for sodium ion batteries. pp. 200–225 (2020) doi:https://doi.org/10.1002/ 162. nano.202000030. 140. Y. Zhang et al., Revisiting the Na2/3Ni1/3Mn2/3O2 cathode: Oxygen redox chemistry and oxygen release suppression. ACS Cent. Sci. 6, 232–240 163. (2020) 14 MRS ENERGY & SUSTAINABILITY // VOLUME XX // www.mrs.org/energy-sustainability-journal

PDF Image | cathode materials for sustainable sodium‐ion batteries

cathode-materials-sustainable-sodium‐ion-batteries-014

PDF Search Title:

cathode materials for sustainable sodium‐ion batteries

Original File Name Searched:

PerspectiveDesignOfCathodeMate.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP