cathode materials for sustainable sodium‐ion batteries

PDF Publication Title:

cathode materials for sustainable sodium‐ion batteries ( cathode-materials-sustainable-sodium‐ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 015

164. S. Kumakura, Y. Tahara, K. Kubota, K. Chihara, S. Komaba, Sodium and 180 manganese stoichiometry of P2-Type Na2/3MnO2. Angew. Chemie 128, 12952–12955 (2016) 165. X. Zheng et al., New insights into understanding the exceptional electro- 181. chemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Mater. 15, 257–265 (2018) 166. H. Yoshida, N. Yabuuchi, S. Komaba, NaFe0.5Co0.5O2 as high energy and 182. power positive electrode for Na-ion batteries. Electrochem. Commun. 34, 60–63 (2013) 183. 167. J.E. Wang, W.H. Han, K.J. Chang, Y.H. Jung, D.K. Kim, New insight into Na intercalation with Li substitution on alkali site and high performance of O3-type layered cathode material for sodium ion batteries. Mater. Chem. A 184. 6, 22731–22740 (2018) 168. M. Huon, E. Gonzalo, M. Casas-cabanas, Structural evolution and electro- chemistry of monoclinic NaNiO2 upon the first cycling process. J. Power 185. Sources 258, 266–271 (2014) 169. L. Sun et al., Insight into Ca-substitution effects on O3-type 186. NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries appli- cation. Small 1704523, 1–7 (2018) 170. K. Jung et al., Mg-doped Na[Ni1/3Fe1/3Mn1/3]O2 with enhanced cycle 187. stability as a cathode material for sodium-ion batteries. Solid State Sci. 106, 106334 (2020) 171. D. Zhou, materials The effect of Na content on the electrochemical for 188. sodium-ion batteries. J. Mater. Sci. 54, 7156–7164 (2019) 172. J. Hwang, S. Myung, D. Aurbach, Y. Sun, Effect of nickel and iron on struc- 189. tural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. J. Power Sources 324, 106–112 (2016) 173. J.S. Thorne et al., Structure and electrochemistry of 190. NaxFexMn1−xO2(1.0≤x≤0.5) for Na-ion battery positive electrodes for Na- ion battery positive electrodes. J. Electrochem. Soc. 2, 361–367 (2013) 191. 174. Nguyen, L. H. B., Chen, F., Masquelier, C. & Croguennec, L. Chapter 2. Polyanionic-type Compounds as Positive Electrode for Na-ion batteries. in Na-ion Batteries 47–100 (2020). 192. 175 L.H.B. Nguyen et al., First 18650-format Na-ion cells aging investigation: A degradation mechanism study. J. Power Sources 529, 1–8 (2022) 176. W. Zhou et al., NaxMV(PO4)3 (M=Mn, Fe, Ni) structure and properties for 193. sodium extraction. Nano Lett. 3, 3–8 (2016) 177. F. Chen et al., A NASICON-type positive electrode for na batteries with high energy density: Na4MnV(PO4)3. Small Methods 1800218, 1–9 (2019) 194. 178. H. Li, M. Xu, Z. Zhang, Y. Lai, J. Ma, Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density. Adv. Funct. Mater. 30, 1–29 (2020) 195. 179. P. Barpanda, L. Lander, S.I. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 8, 1–26 (2018) M. Bianchini, P. Xiao, Y. Wang, G. Ceder, Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries. Adv. Energy Mater. 7, 1700514 (2017) M. Kim, D. Kim, W. Lee, H.M. Jang, B. Kang, New class of 3.7 v Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework. Chem. Mater. 30, 6346–6352 (2018) T. Song et al., A low-cost and environmentally friendly mixed polyanionic cathode for sodium-ion storage. Angew. Chemie 132, 750–755 (2020) J. Olchowka et al., Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials. Chem. Commun. 55, 11719–11722 (2019) Q. Liu et al., The cathode choice for commercialization of sodium-ion bat- teries: layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 30, 1–15 (2020) M. Pasta et al., Manganese–cobalt hexacyanoferrate cathodes for sodium- ion batteries. J. Mater. Chem. A 4, 4211–4223 (2016) X. Wu et al., Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 8, 5393–5399 (2016) J. Sottmann et al., In operando synchrotron XRD/XAS investigation of sodium insertion into the prussian blue analogue cathode material Na1.32Mn[Fe(CN)6]0.83·zH2O. Electrochim. Acta 200, 305–313 (2016) G. He, L.F. Nazar, Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2, 1122–1127 (2017) Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7, 1643–1647 (2014) D. Su, A. McDonagh, S. Qiao, G. Wang, High-capacity aqueous potassium- ion batteries for large-scale energy storage. Adv. Mater. 29, 1604007 (2017) H. Wang, Q. Zhu, H. Li, C. Xie, D. Zeng, Tuning the particle size of Prus- sian blue by a dual anion source method. Cryst. Growth Des. 18, 5780–5789 (2018) A. Shrivastava, K.C. Smith, Electron conduction in nanoparticle agglomer- ates limits apparent Na+ diffusion in prussian blue analogue porous elec- trodes. J. Electrochem. Soc. 165, A1777–A1787 (2018) Y. Moritomo, S. Urase, T. Shibata, Enhanced battery performance in man- ganese hexacyanoferrate by partial substitution. Electrochim. Acta 210, 963–969 (2016) Chen, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. 1094–1105 doi:https://doi.org/10. 1016/j.joule.2019.02.004. C. Niu et al., Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021) MRS ENERGY & SUSTAINABILITY // VOLUME XX // www.mrs.org/energy-sustainability-journal 15

PDF Image | cathode materials for sustainable sodium‐ion batteries

PDF Search Title:

cathode materials for sustainable sodium‐ion batteries

Original File Name Searched:

PerspectiveDesignOfCathodeMate.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)