logo

cathode-solid electrolyte composite sodium-ion

PDF Publication Title:

cathode-solid electrolyte composite sodium-ion ( cathode-solid-electrolyte-composite-sodium-ion )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21488-7 mounted onto a SEM sample stage (Ted Pella) and transferred into the FEI Scios DualBeam FIB/SEM using the air-sensitive holder to avoid any ambient air exposure. Cross sections were milled using the FIB and SEM images were taken of the samples. Data availability The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. The X-ray crystallographic coordinates for the structures reported in this study, Na3YCl6 and Na2ZrCl6, have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2057626-2057627. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc. cam.ac.uk/data_request/cif. Code availability DFT calculations and AIMD simulations were carried out using the open-source Python Materials Genomics (pymatgen) package, which is available at http://pymatgen.org. The moment tensor potential was fitted using the open-source materials machine learning (maml) package, which is available at https://github.com/materialsvirtuallab/maml. Received: 5 November 2020; Accepted: 28 January 2021; References 1. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). 2. Hayashi, A. et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10, 1–6 (2019). 3. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface Stability in Solid-State Batteries. Chem. Mater. 28, 266–273 (2016). 4. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 1–7 (2016). 5. Banerjee, A. et al. Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 55, 9634–9638 (2016). 6. Wang, Y. et al. Development of solid-state electrolytes for sodium-ion battery–a short review. Nano Mater. Sci. 1, 91–100 (2019). 7. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018). 8. Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019). 9. Liang, J. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020). 10. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019). 11. Park, K.-H. et al. High-voltage superionic halide solid electrolytes for all-solid- state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020). 12. Li, X. et al. Progress and perspectives on halide lithium conductors for all- solid-state lithium batteries. Energy Environ. Sci. 13, 1429–1461 (2020). 13. Xu, Z. et al. Influence of anion charge on Li ion diffusion in a new solid-state electrolyte, Li3LaI6. Chem. Mater. 31, 7425–7433 (2019). 14. Wickleder, M. S. & Meyer, G. Ternäre halogenide vom Typ A3MX6. III [1, 2]. synthese, strukturen und Ionenleitfähigkeit der halogenide Na3MX6 (X = Cl, Br). Z. F.ür. Anorg. Allg. Chem. 621, 457–463 (1995). 15. Sun, Y., Suzuki, K., Hori, S., Hirayama, M. & Kanno, R. Superionic conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary system. Chem. Mater. 29, 5858–5864 (2017). 16. Zhao, W., Yi, J., He, P. & Zhou, H. Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem. Energy Rev. 2, 574–605 (2019). 17. Jolley, A. G., Cohn, G., Hitz, G. T. & Wachsman, E. D. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12. Ionics 21, 3031–3038 (2015). 18. Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity oftheLi10±1MP2X12 (M=Ge,Si,Sn,AlorP,andX=O,SorSe)familyof superionic conductors. Energy Environ. Sci. 6, 148–156 (2012). 19. Zhu, Y., He, X. & Mo, Y. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li- ion batteries. J. Mater. Chem. A 4, 3253–3266 (2016). 20. Yu, C.-Y. et al. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 8, 2019–2026 (2015). 21. Tang, H. et al. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 30, 163–173 (2018). 22. Zuo, Y. et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731–745 (2020). 23. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016). 24. Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017). 25. Gubaev, K., Podryabinkin, E. V., Hart, G. L. W. & Shapeev, A. V. Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Comput. Mater. Sci. 156, 148–156 (2019). 26. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993). 27. Liao, W. & Dronskowski, R. Trisodium yttrium(III) hexachloride. Acta Crystallogr. Sect. E Struct. Rep. Online 60, i72–i73 (2004). 28. Cipriani, C. Ricerche strutturistiche e cristallochimiche sul fluotitanato di sodi, 1955. Period. Mineral. 24, 361–375 (1955). 29. Harris, R. K. & Nesbitt, G. J. Cross polarization for quadrupolar nuclei— Proton to sodium-23. J. Magn. Reson. 78, 245–256 (1988). 1969. 30. Arnold, A. A. et al. Structure of NaYF4 upconverting nanoparticles: a multinuclear solid-state NMR and DFT computational study. J. Phys. Chem. C. 117, 25733–25741 (2013). 31. Bessada, C., Rakhmatullin, A., Rollet, A.-L. & Zanghi, D. High temperature NMR approach of mixtures of rare earth and alkali fluorides: an insight into the local structure. J. Fluor. Chem. 130, 45–52 (2009). 32. Udovic, T. J. et al. Exceptional superionic conductivity in disordered sodium decahydro-closo-decaborate. Adv. Mater. 26, 7622–7626 (2014). 33. Verdal, N. et al. Anion reorientations in the superionic conducting phase of Na2B12H12. J. Phys. Chem. C. 118, 17483–17489 (2014). 34. Martelli, P. et al. Rotational motion in LiBH4/LiI solid solutions. J. Phys. Chem. A 115, 5329–5334 (2011). 35. Zhang, Z. et al. Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors. Matter 2, 1667–1684 (2020). 36. Banerjee, S., Zhang, X. & Wang, L.-W. Motif-based design of an oxysulfide class of lithium superionic conductors: toward improved stability and record- high Li-ion conductivity. Chem. Mater. 31, 7265–7276 (2019). 37. Duchêne, L. et al. Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries. Energy Storage Mater. 26, 543–549 (2020). 38. Duchêne, L. et al. A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte. Energy Environ. Sci. 10, 2609–2615 (2017). 39. Hayashi, A., Noi, K., Tanibata, N., Nagao, M. & Tatsumisago, M. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4. J. Power Sources 258, 420–423 (2014). 40. Stratford, J. M. et al. Investigating sodium storage mechanisms in tin anodes: a combined pair distribution function analysis, density functional theory, and solid-state NMR approach. J. Am. Chem. Soc. 139, 7273–7286 (2017). 41. Ando, T., Sakuda, A., Tatsumisago, M. & Hayashi, A. All-solid-state sodium- sulfur battery showing full capacity with activated carbon MSP20-sulfur- Na3SbS4 composite. Electrochem. Commun. 116, 106741 (2020). 42. Wan, H. et al. Core–shell Fe1–xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density. ACS Nano 12, 2809–2817 (2018). 43. Zhang, S. et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries. Adv. Funct. Mater. 30, 2001118 (2020). 44. Yue, J. et al. High-performance all-inorganic solid-state sodium–sulfur battery. ACS Nano 11, 4885–4891 (2017). 45. Rao, R. P., Zhang, X., Phuah, K. C. & Adams, S. Mechanochemical synthesis of fast sodium ion conductor Na11Sn2PSe12 enables first sodium–selenium all- solid-state battery. J. Mater. Chem. A 7, 20790–20798 (2019). 46. Wan, H. et al. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances. ACS Appl. Mater. Interfaces 10, 12300–12304 (2018). 47. Heo, J. W., Banerjee, A., Park, K. H., Jung, Y. S. & Hong, S.-T. New Na-ion solid electrolytes Na4−xSn1−xSbxS4 (0.02 ≤ x ≤ 0.33) for all-solid-state Na-ion batteries. Adv. Energy Mater. 8, 1702716 (2018). 48. Murgia, F., Brighi, M. & Černý, R. Room-temperature-operating Na solid- state battery with complex hydride as electrolyte. Electrochem. Commun. 106, 106534 (2019). 49. Santhosha, A. L., Medenbach, L., Palaniselvam, T. & Adelhelm, P. Sodium- storage behavior of exfoliated MoS2 as an electrode material for solid-state batteries with Na3PS4 as the solid electrolyte. J. Phys. Chem. C. 124, 10298–10305 (2020). 10 NATURE COMMUNICATIONS | (2021)12:1256 | https://doi.org/10.1038/s41467-021-21488-7 | www.nature.com/naturecommunications

PDF Image | cathode-solid electrolyte composite sodium-ion

cathode-solid-electrolyte-composite-sodium-ion-010

PDF Search Title:

cathode-solid electrolyte composite sodium-ion

Original File Name Searched:

s41467-021-21488-7.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP