logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 040

Materials 2020, 13, 3453 40 of 58 4. Ratnakumar, B.V.; Distefano, S.; Halpert, G. Electrochemistry of metal chloride cathodes in sodium ion batteries. J. Electrochem. Soc. 1990, 137, 2991–2997. [CrossRef] 5. Kemp, J.P.; Beal, D.J.; Cox, P.A.; Foord, J.S. Surface segregation and sodium transport in Na2CoO2. Vacuum 1990, 41, 1739–1742. [CrossRef] 6. Distefano, S.; Ratnakumar, B.V.; Bankston, C.P. Advanced rechargeable sodium batteries with novel cathodes. J. Power Sources 1990, 29, 301–309. [CrossRef] 7. Abraham, K.M.; Pasquariello, D.M. Rechargeable sodium batteries NaFeO2 and FeOCl as positive electrodes in molten NaAlCl4. J. Electrochem. Soc. 1990, 137, 1189–1190. [CrossRef] 8. Li, F.; Wei, Z.; Manthiram, A.; Feng, Y.; Ma, J.; Mai, L. Sodium-based batteries: From critical materials to battery systems. J. Mater. Chem. A 2019, 7, 9406–9431. [CrossRef] 9. Roberts, S.; Kendrick, E. The re-emergence of sodium ion batteries: Testing, processing, and manufacturability. Nanotechnol. Sci. Appl. 2018, 11, 23–33. [CrossRef] 10. Lao, M.M.; Zhang, Y.; Luo, W.B.; Yan, Q.Y.; Sun, W.P.; Dou, S.X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622. [CrossRef] 11. Hou, H.S.; Qiu, X.Q.; Wei, W.F.; Zhang, Y.; Ji, X.B. Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1602898. [CrossRef] 12. Munoz-Marquez, M.A.; Saurel, D.; Gomez-Camer, J.L.; Casas-Cabanas, M.; Castillo-Martinez, E.; Rojo, T. Na-ion batteries for large acale applications: A review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 2017, 7, 1700463. [CrossRef] 13. You, Y.; Manthiram, A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1701785. [CrossRef] 14. Chen, S.Q.; Wu, C.; Shen, L.; Zhu, C.; Huang, Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431. [CrossRef] 15. Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K. A review on hexacyanoferrate-based materials for energy storage and smart windows: Challenges and perspectives. J. Mater. Chem. 2017, 5, 18919–18932. [CrossRef] 16. Clement, R.J.; Bruce, P.G.; Grey, C.P. Review-manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J. Electrochem. Soc. 2015, 162, 2589–2604. [CrossRef] 17. Nayak, P.K.; Yang, L.T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [CrossRef] 18. Hasa, I.; Hassoun, J.; Passerini, S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Res. 2017, 10, 3942–3969. [CrossRef] 19. Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Appl. Energy 2013, 110, 252–266. [CrossRef] 20. Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global lithium availability. J. Ind. Ecol. 2011, 15, 760–775. [CrossRef] 21. Goldie-Scot, L. A Behind the Scenes Take on Lithium-Ion Battery Prices. Available online: https://about.bnef. com/blog/behind-scenes-take-lithium-ion-battery-prices (accessed on 5 March 2019). 22. How battery Costs Impact Tesla’s Margins: An Interactive Analysis. Available online: https://www.forbes.com/sites/greatspeculations/2020/01/13/how-battery-costs-impact-teslas-margins-an- interactive-analysis/#43304f3e5036 (accessed on 13 January 2020). 23. Peters, J.E.; Cruz, A.P.; Weil, M. Exploring the economic potential of sodium-ion batteries. Batteries 2019, 5, 10. [CrossRef] 24. Mauger, A.; Julien, C.M. Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics 2017, 23, 1933–1947. [CrossRef] 25. Zaghib, K.; Mauger, A.; Julien, C.M. Rechargeable Lithium Batteries, from Fundamentals to Applications; Franco, A.A., Ed.; Woodhead Publ. Ltd: Cambridge, UK, 2015; Chapter 12; pp. 319–351. 26. Kim, H.; Kim, H.; Ding, Z.; Lee, M.H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943. [CrossRef] 27. Wang, T.; Su, D.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-040

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP