logo

Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 051

Materials 2020, 13, 3453 51 of 58 234. Fu, C.; Chen, T.; Qin, W.; Lu, T.; Sun, Z.; Xie, X.; Pan, L. Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 2016, 22, 555–562. [CrossRef] 235. Das,S.K.;Jache,B.;Lahon,H.;Bender,C.L.;Janek,J.;Adelhelm,P.Graphenemediatedimprovedsodium storage in nanocrystalline anatase TiO2 for sodium ion batteries with ether electrolyte. Chem. Commun. 2016, 52, 1428–1431. [CrossRef] [PubMed] 236. Yeo, Y.; Jung, J.W.; Park, K.; Kim, I.D. Graphene-wrapped anatase TiO2 nanofibers as high-rate and long-cycle-life anode material for sodium ion batteries. Sci. Rep. 2015, 5, 13862. [CrossRef] [PubMed] 237. Feng,J.M.;Dong,L.;Han,Y.;Li,X.F.;Li,D.J.Facilesynthesisofgraphene-titaniumdioxidenanocomposites as anode materials for Na-ion batteries. Int. J. Hydrog. Energy 2016, 41, 355–360. [CrossRef] 238. Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929. [CrossRef] 239. Tahir, M.N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 2015, 6, 1501489. [CrossRef] 240. Zhang,Y.;Yang,Y.;Hou,H.;Yang,X.;Chen,J.;Jing,M.;Jia,X.;Ji,X.Enhancedsodiumstoragebehaviorof carbon coated anatase TiO2 hollow spheres. J. Mater. Chem. A 2015, 3, 18944–18952. [CrossRef] 241. Chen, J.; Zou, G.; Hou, H.; Zhang, Y.; Huang, Z.; Ji, X. Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage. J. Mater. Chem. A 2016, 4, 12591–12601. [CrossRef] 242. Yang,Y.;Ji,X.;Jing,M.;Hou,H.;Zhu,Y.;Fang,L.;Yang,X.;Chen,Q.;Banks,C.E.Carbondotssupported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 2015, 3, 5648–5665. [CrossRef] 243. Wu,N.;Qiao,X.;Shen,J.;Liu,G.;Sun,T.;Wu,H.;Hou,H.;Liu,X.;Zhang,Y.;Ji,X.Anataseinverseopal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim. Acta 2019, 299, 540–548. [CrossRef] 244. Hong,Z.;Zhou,K.;Huang,Z.;Wei,M.Iso-orientedanataseTiO2mesocagesasahighperformanceanode material for sodium-ion storage. Sci. Rep. 2015, 5, 11960. [CrossRef] [PubMed] 245. Zeng,C.;Xie,F.;Yang,X.;Jaroniek,M.;Zhang,L.;Qiao,S.Z.Ultrathintitanatenanosheets/graphenefilms derived from confined transformation for excellent Na/K ion storage. Angew. Chem. Int. Ed. 2018, 57, 8540–8544. [CrossRef] [PubMed] 246. Liu,Y.;Wang,H.;Cheng,L.;Han,N.;Zhao,F.;Li,P.;Jin,C.;Li,Y.TiS2nanoplates:Ahigh-rateandstable electrode material for sodium ion batteries. Nano Energy 2016, 20, 168–175. [CrossRef] 247. Hu,Z.;Tai,Z.;Liu,Q.;Wang,S.W.;Jin,H.;Wang,S.;Jin,H.;Wang,S.;Lai,W.;Chen,M.;etal.Ultrathin2D TiS2 nanosheets for high capacity and long-life sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803210. [CrossRef] 248. Sun, Y.; Zhao, L.; Pan, H.; Lu, W.; Gu, L.; Hu, Y.S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L.; et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870. [CrossRef] 249. Yang, L.Y.; Li, H.Z.; Liu, J.; Tang, S.S.; Lu, Y.K.; Li, S.T.; Min, J.; Yan, N.; Lei, M. Li4Ti5O12 nanosheets as high-rate and long-life anode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 24446–24452. [CrossRef] 250. Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.M.; Palacín, M.R. Na2 Ti3 O7 : Lowest voltage ever reported oxide Insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109–4111. [CrossRef] 251. Muñoz-Márquez,M.A.;Zarrabeitia,M.;Castillo-Martínez,E.;Eguía-Barrio,A.;Rojo,T.;Casas-Cabanas,M. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. ACS Appl. Mater. Interfaces 2015, 7, 7801–7808. [CrossRef] [PubMed] 252. Rudola, A.; Sharma, N.; Balaya, P. Introducing a 0.2 V sodium-ion battery anode: The Na2 Ti3 O7 to Na3-x Ti3 O7 pathway. Electrochem. Commun. 2015, 61, 10–13. [CrossRef] 253. Wu,D.;Li,X.;Xu,B.;Twu,N.;Liu,L.;Ceder,G.NaTiO2:Alayeredanodematerialforsodium-ionbatteries. Energy Environ. Sci. 2015, 8, 195–202. [CrossRef] 254. Liao, J.Y.; Manthiram, A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage. Nano Energy 2015, 18, 20–27. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

electrode-materials-sodium-ion-batteries-051

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP