Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 053

Materials 2020, 13, 3453 53 of 58 276. Dou,Y.;Wang,Y.;Tian,D.;Xu,J.;Zhang,Z.;Liu,Q.;Ruan,B.;Ma,J.;Sun,Z.;Dou,S.X.Atomicallythin Co3O4 nanosheet-coated stainless steel mesh with enhanced capacitive Na+ storage for high-performance sodium-ion batteries. 2D Mater. 2016, 4, 015022. [CrossRef] 277. Wang,Z.;Zhang,S.;Yue,L.;Wu,B.;Mi,J.SynthesisofCo3O4nanocubes/CNTscompositewithenhanced sodium storage performance. Solid State Ion. 2017, 312, 32–37. [CrossRef] 278. Li, H.H.; Li, Z.Y.; Wu, X.L.; Zhang, L.L.; Fan, C.Y.; Wang, H.F.; Li, X.Y.; Wang, K.; Sun, H.Z.; Zhang, J.P. Shale-like Co3O4 for high performance lithium/sodium ion batteries. J. Mater. Chem. A 2016, 4, 8242–8248. [CrossRef] 279. Wu, Y.; Meng, J.; Li, Q.; Niu, C.; Wang, X.; Yang, W.; Li, W.; Mai, L. Interface-modulated fabrication of hierarchical yolk–shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage. Nano Res. 2017, 10, 2364–2376. [CrossRef] 280. Xu,M.;Xia,Q.;Yue,J.;Zhu,X.;Guo,Q.;Zhu,J.;Xia,H.Rambutan-likehybridhollowspheresofcarbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries. Adv. Func. Mater. 2019, 29, 1807377. [CrossRef] 281. Li, X.; Sun, X.; Gao, Z.; Hu, X.; Ling, R.; Cai, S.; Zheng, C.; Hu, W. Highly reversible and fast sodium storage boosted by improved interfacial and surface charge transfer derived from the synergistic effect of heterostructures and pseudocapacitance in SnO2-based anodes. Nanoscale 2018, 10, 2301–2309. [CrossRef] [PubMed] 282. Zhang,W.;Yue,Z.;Miao,W.;Liu,S.;Fu,C.;Li,L.;Zhang,Z.;Wang,H.Carbon-encapsulatedtube-wire Co3O4/MnO2 heterostructure nanofibers as anode material for sodium-ion batteries. J. Mater. Chem. A 2018, 35, 1800138. 283. Fang, G.; Zhou, J.; Cai, Y.; Liu, S.; Tan, X.; Pan, A.; Liang, S. Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. J. Mater. Chem. A 2017, 5, 13983–13993. [CrossRef] 284. Klein,F.;Jache,B.;Bhide,A.;Adelhelm,P.Conversionreactionsforsodium-ionbatteries.Phys.Chem.Chem. Phys. 2013, 15, 15876–15887. [CrossRef] [PubMed] 285. Yuan,S.;Huang,X.L.;Ma,D.L.;Wang,H.G.;Meng,F.Z.;Zhang,X.B.Engravingcopperfoiltogivelarge-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 2014, 26, 2273–2279. [CrossRef] [PubMed] 286. Liu,H.;Cao,F.;Zheng,H.;Sheng,H.;Li,L.;Wu,S.;Liu,C.;Wang,J.Insituobservationofthesodiation process in CuO nanowires. Chem. Commun. 2015, 51, 10443–10446. [CrossRef] [PubMed] 287. Lu,Y.;Zhang,N.;Zhao,Q.;Liang,J.;Chen,J.Micro-nanostructuredCuO/Cspheresashigh-performance anode materials for Na-ion batteries. Nanoscale 2015, 7, 2770–2776. [CrossRef] [PubMed] 288. Huang,Z.;Hou,H.;Zou,G.;Chen,J.;Zhang,Y.;Liao,H.;Li,S.;Ji,X.3DporouscarbonencapsulatedSnO2 nanocomposite for ultrastable sodium ion batteries. Electrochim. Acta 2016, 214, 156–164. [CrossRef] 289. Cheng, Y.; Huang, J.; Li, J.; Xu, Z.; Cao, L.; Ouyang, H.; Yan, J.; Qi, H. SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance. J. Alloy. Compd. 2016, 658, 234–240. [CrossRef] 290. Xu, Y.; Zhou, M.; Zhang, C.; Wang, C.; Liang, L.; Fang, Y.; Wu, M.; Cheng, L.; Lei, Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy 2017, 38, 304–312. [CrossRef] 291. Bian,H.;Zhang,J.;Yuen,M.F.;Kang,W.;Zhan,Y.;Yu,D.Y.W.;Xu,Z.;Li,Y.Y.AnodicnanoporousSnO2grown on Cu foils as superior binder-free Na-ion battery anodes. J. Power Sources 2016, 307, 634–640. [CrossRef] 292. Hu,Z.;Liu,Q.;Chou,S.L.;Dou,S.X.Advancesandchallengesinmetalsulfides/selenidesfornext-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606. [CrossRef] 293. Jiang,Y.;Zou,G.;Hong,W.;Zhang,Y.;Zhang,Y.;Shuai,H.;Xu,W.;Hou,H.;Ji,X.N-Richcarbon-coated Co3S4 ultrafine nanocrystals derived from ZIF-67 as an advanced anode for sodium-ion batteries. Nanoscale 2018, 10, 18786–18794. [CrossRef] 294. Zhao,M.;Zhu,L.;Fu,B.;Jiang,S.;Zhou,Y.;Song,Y.SodiumionstorageperformanceofNiCo2S4hexagonal Nanosheets. Acta Chim. Chim. Sin. 2019, 35, 193–199. [CrossRef] 295. Zhang,Z.;Li,Z.;Yin,L.HollowprismNiCo2S4linkedwithinterconnectedreducedgrapheneoxideasa high performance anode material for sodium and lithium ion batteries. New J. Chem. 2018, 42, 1467–1476. [CrossRef]

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)