Electrode Materials for Sodium-Ion Batteries

PDF Publication Title:

Electrode Materials for Sodium-Ion Batteries ( electrode-materials-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 058

Materials 2020, 13, 3453 58 of 58 phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. J. Mater. Chem. A 2018, 6, 10121–10134. [CrossRef] 375. Capone,I.;Hurlbutt,K.;Naylor,A.J.;Xiao,A.W.;Pasta,M.Effectoftheparticle-sizedistributiononthe electrochemical performance of a red phosphorus–carbon composite anode for sodium-ion batteries. Energy Fuels 2019, 33, 4651–4658. [CrossRef] [PubMed] 376. Zhou,J.;Liu,X.;Cai,W.;Zhu,Y.;Liang,J.;Zhang,K.;Lan,Y.;Jiang,Z.;Wang,G.;Qian,Y.Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Adv. Mater. 2017, 29, 1700214. [CrossRef] [PubMed] 377. Liu,S.;Feng,J.;Bian,X.;Liu,J.;Xu,H.;An,Y.Acontrolledredphosphorus@Ni–Pcore@shellnanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1222–1233. [CrossRef] 378. Hu,Y.;Li,B.;Jiao,X.;Zhang,C.;Dai,X.;Song,J.Stablecyclingofphosphorusanodeforsodium-ionbatteries through chemical bonding with sulfurized polyacrylonitrile. Adv. Func. Mater. 2018, 28, 1801010. [CrossRef] 379. Li, W.; Hu, S.; Luo, X.; Li, Z.; Sun, X.; Li, M.; Liu, F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820. [CrossRef] 380. Wu,Y.;Liu,Z.;Zhong,X.;Cheng,X.;Fan,Z.;Yu,Y.Amorphousredphosphorusembeddedinsandwiched porous carbon enabling superior sodium storage performances. Small 2018, 14, 1703472. [CrossRef] 381. Jung,S.C.;Jung,D.S.;Choi,J.W.;Han,Y.K.Atom-levelunderstandingofthesodiationprocessinsilicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283–1288. [CrossRef] 382. Huang,S.;Liu,L.;Zheng,Y.;Wang,Y.;Kong,D.;Zhang,Y.;Shi,Y.;Zhang,L.;Schmidt,O.G.;Yang,H.Y.Efficient sodium storage in rolled-up amorphous Si nanomembranes. Adv. Mater. 2018, 30, 1706637. [CrossRef] 383. Zhang,L.;Hu,X.;Chen,C.;Guo,H.;Liu,X.;Xu,G.;Zhong,H.;Cheng,S.;Wu,P.;Meng,J.;etal.Inoperando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Adv. Mater. 2017, 29, 1604708. [CrossRef] 384. Yen, H.J.; Tsai, H.; Zhou, M.; Holby, E.F.; Choudhury, S.; Chen, A.; Adamska, L.; Tretiak, S.; Sanchez, T.; Iyer, S.; et al. Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly efficient lithium storage. Adv. Mater. 2016, 28, 10250–10256. [CrossRef] [PubMed] 385. Choi,S.;Ko,Y.;Lee,J.;Kang,Y.3DMoS2–graphenemicrospheresconsistingofmultiplenanosphereswith superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788. [CrossRef] 386. Zhao,Y.;Feng,J.;Liu,X.;Wang,F.;Wang,L.;Shi,C.;Huang,L.;Feng,X.;Chen,X.;Xu,L.;etal.Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nat. Commun. 2014, 5, 4565. [CrossRef] [PubMed] 387. Quin,J.;Wang,T.;Liu,D.;Liu,E.;Zhao,N.;Shi,C.;He,F.;Ma,L.;He,C.Atop-downstrategytowardSnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv. Mater. 2018, 30, 1704670. [CrossRef] [PubMed] 388. Tan,D.;Chen,P.;Wang,G.;Chen,G.;Pietsch,T.;Brunner,E.;Doert,T.;Ruck,M.One-potresource-efficient synthesis of SnSb powders for composite anodes in sodium-ion batteries. RSC Adv. 2020, 10, 22250–22256. [CrossRef] 389. Wang,Z.;Dong,K.;Wang,D.;Chen,F.;Luo,S.;Liu,Y.;He,C.;Shi,C.;Zhao,N.Monodispersemulticore-shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. Chem. Eng. J. 2019, 371, 356–365. [CrossRef] 390. Liu,Q.;Hu,Z.;Chen,M.;Zou,C.;Jin,H.;Wang,S.;Chou,S.L.;Liu,Y.;Dou,S.X.Thecathodechoicefor commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Func. Mater. 2020, 30, 1909530. [CrossRef] 391. Jin, T.; Han, Q.; Jiao, L. Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 1806304. [CrossRef] [PubMed] © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

PDF Image | Electrode Materials for Sodium-Ion Batteries

PDF Search Title:

Electrode Materials for Sodium-Ion Batteries

Original File Name Searched:

materials-13-03453-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)