Exploring the Economic Potential of Sodium-Ion Batteries

PDF Publication Title:

Exploring the Economic Potential of Sodium-Ion Batteries ( exploring-economic-potential-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 005

Batteries 2019, 5, 10 5 of 15 Table 2. Inputs required for the production of 1 kg of hard carbon and final hard carbon costs. Item Sugar Coconut shells Petroleum coke Electricity Heat from natural gas Nitrogen Water figure 2.3. Cost of Electrolyte Sugar Amount 11.00 0.06 5.23 3.84 0.10 17.28 Coconut Shell Amount 4.5 0.03 2.36 1.73 0.09 6.30 Petr. Coke Amount Unit Price (€/Unit) kg 0.40 [33] kg 0.01 [34] 1.14 kg 0.17 [35] 0.01 kWh 28.86 [36] 1.89 MJ 0.80 [36] 0.90 kg 1.83 [37,38] 0.01 L 0.0045 [39] 3.65 €/kg Lithium or sodium hexafluorophosphate (LiPF6 or NaPF6) salt in an organic solvent like dimethyl carbonate (DMC), ethylene carbonate (EC), or a combination of those two is the electrolyte most commonly used in LIB or SIB cells [40–42]. In this work, a 1 M solution of LiPF6 or NaPF6 in an 80 wt %–20 wt % mixture of EC and DMC was considered as the electrolyte for the LIB and the SIB, respectively [13,15,43,44]. Since the synthesis route of LiPF6 and NaPF6 is identical, the cost estimation for the SIB electrolyte was based on available data for LIBs. In the synthesis process, the same precursor materials were used, except for the alkali metal precursors (Li2CO3/Na2CO3). However, since it was very difficult to find information about the contribution of the different precursors to the final electrolyte price, this was estimated based on stoichiometric calculations and available market prices for the precursors. For the LIB electrolyte, an average price of 16.06 €/l was used [17], and the corresponding price of the SIB electrolyte was then calculated by substituting the Li2CO3 with Na2CO3, obtaining 15.84 €/l. More details about the electrolyte composition and the stoichiometric calculations can be found in the SM (Table S4). 2.4. Cost of Other Materials Apart from the electrodes and electrolyte, an LIB cell contains other components such as separators, collector foils, binders, and the cell container. These are usually not dependent on the LIB chemistry, and it is therefore assumed that they do not differ significantly between the lithium- and the sodium-ion battery. In fact, one of the advantages of SIBs is that they are considered a “drop-in” technology, allowing the same manufacturing lines to be used for cell production and having a large proportion of identical parts [10,15]. For the battery model, it was assumed that the separators were uniformly made of polyethylene foil. The common conductive additive for the electrodes is carbon black. For the positive electrode, a binder based on polyvinylidene fluoride (PVdF; the most frequently used organic binder for LIBs) is used in combination with N-Methyl-2-pyrrolidone (NMP) as organic solvent, whereas the anode uses carboxymethyl cellulose (CMC) as an organic water-based binder [15]. Other types of binders are also frequently used, but for the cost comparison, which focuses on the different active materials, these were assumed to be identical between the compared battery types. The price for both types of binder was taken from the literature [17]. Compared to the lithium-ion cells (NMC- and LFP-type) under study that use aluminum as the positive collector foil and copper as the negative collector foil, aluminum can be used for both collector foils in SIBs [14]. Cost data for 18650-type cell casings were hard to find, and the only publication that provided information in this regard contained unrealistically high values of 0.2 € per cell container plus another 0.2 € for cell terminals [23]. Thus, retail prices from Internet suppliers were used instead as an approximation, with an average value of 0.1 € per cell container including cap and insulation [45,46]. An overview of the assumed costs for all materials and battery cell components is provided in Table 3. The mass balances for the battery cells under study are provided in detail in Tables S5 and S6 of the SM.

PDF Image | Exploring the Economic Potential of Sodium-Ion Batteries

PDF Search Title:

Exploring the Economic Potential of Sodium-Ion Batteries

Original File Name Searched:

Exploring_the_Economic_Potential_of_Sodium-Ion_Bat.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)