logo

Ga2Te3-Based Anodes for Sodium-Ion Batteries

PDF Publication Title:

Ga2Te3-Based Anodes for Sodium-Ion Batteries ( ga2te3-based-anodes-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 012

Materials 2022, 15, 6231 12 of 15 References (20%) and (b) Ga2Te3–TiO2–C (30%) for SIBs. Figure S17: (a) Galvanostatic discharge-charge profiles of Ga2Te3-TiO2 at a current density of 100 mA g−1, (b) CV curves of Ga2Te3-TiO2. Table S1: Rate performance of Te-based composite anode for SIB. Table S2: Calculation of capacity contribution of Ga2Te3, TiO2 and C in the Ga2Te3–TiO2–C composite for SIB. Table S3: Calculation of theoretical capacity of Ga2Te3–TiO2–C(10%) and Ga2Te3-TiO2 for SIB. Table S4: Coulombic efficiency variation of Ga2Te3–TiO2–C (10%) at various cycle numbers measured at 100 mA g−1 for SIB. Table S5: Coulombic efficiency variation of Ga2Te3–TiO2–C (10%) at various cycle numbers measured at 500 mA g−1 for SIB. Table S6: Coulombic efficiency of Ga2Te3–TiO2–C at current density of 100 mA g−1 during initial 10 cycles for SIB. Table S7: Coulombic efficiency of Ga2Te3–TiO2–C at current density of 500 mA g−1 during initial 10 cycles for SIB. Table S8: Charge-transfer resistance (Rct) of Ga2Te3–TiO2–C for SIB. Author Contributions: Data curation, V.P.H.H.; Funding acquisition, J.H.; Investigation, V.P.H.H. and I.T.K.; Supervision, I.T.K. and J.H.; Validation, V.P.H.H. and J.H.; Writing—original draft, V.P.H.H.; Writing—review & editing, I.T.K. and J.H. All authors have read and agreed to the published version of the manuscript. Funding: This research was supported by the Basic Science Research Capacity Enhancement Project through a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2019R1A6C1010016) and a Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (No. P0012453, The Competency Development Program for Industry Specialists). Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Not applicable. Conflicts of Interest: The authors declare no conflict of interest. 1. Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [CrossRef] [PubMed] 2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [CrossRef] 3. Sung, G.-K.; Nam, K.-H.; Choi, J.-H.; Park, C.-M. Germanium telluride: Layered high-performance anode for sodium-ion batteries. Electrochim. Acta 2020, 331, 135393. [CrossRef] 4. Nguyen, T.P.; Kim, I.T. Ag Nanoparticle-Decorated MoS2 Nanosheets for Enhancing Electrochemical Performance in Lithium Storage. Nanomaterials 2021, 11, 626. [CrossRef] 5. Nguyen, T.P.; Kim, I.T. Self-Assembled Few-Layered MoS2 on SnO2 Anode for Enhancing Lithium-Ion Storage. Nanomaterials 2020, 10, 2558. [CrossRef] 6. Preman, A.N.; Lee, H.; Yoo, J.; Kim, I.T.; Saito, T.; Ahn, S.-k. Progress of 3D network binders in silicon anodes for lithium ion batteries. J. Mater. Chem. A 2020, 8, 25548–25570. [CrossRef] 7. Nguyen, T.P.; Kim, I.T. W2C/WS2 Alloy Nanoflowers as Anode Materials for Lithium-Ion Storage. Nanomaterials 2020, 10, 1336. [CrossRef] 8. Kim, W.S.; Vo, T.N.; Kim, I.T. GeTe-TiC-C Composite Anodes for Li-Ion Storage. Materials 2020, 13, 4222. [CrossRef] 9. Vo, T.N.; Kim, D.S.; Mun, Y.S.; Lee, H.J.; Ahn, S.-k.; Kim, I.T. Fast charging sodium-ion batteries based on Te-P-C composites and insights to low-frequency limits of four common equivalent impedance circuits. Chem. Eng. J. 2020, 398, 125703. [CrossRef] 10. Hoang Huy, V.P.; Kim, I.T.; Hur, J. The Effects of the Binder and Buffering Matrix on InSb-Based Anodes for High-Performance Rechargeable Li-Ion Batteries. Nanomaterials 2021, 11, 3420. [CrossRef] 11. Nguyen, Q.; Phung, V.; Kidanu, W.; Ahn, Y.; Nguyen, T.; Kim, I.T. Carbon-free Cu/SbxOy/Sb nanocomposites with yolk-shell and hollow structures as high-performance anodes for lithium-ion storage. J. Alloys Compd. 2021, 878, 160447. [CrossRef] 12. Nguyen, T.P.; Kim, I.T. In Situ Growth of W2C/WS2 with Carbon-Nanotube Networks for Lithium-Ion Storage. Nanomaterials 2022, 12, 1003. [CrossRef] [PubMed] 13. Nguyen, T.P.; Kim, I.T. Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries. Materials 2022, 15, 2034. [CrossRef] [PubMed] 14. Phan Nguyen, T.; Thi Giang, T.; Tae Kim, I. Restructuring NiO to LiNiO2: Ultrastable and reversible anodes for lithium-ion batteries. Chem. Eng. J. 2022, 437, 135292. [CrossRef] 15. Tarascon, J.-M. Is lithium the new gold? Nat. Chem. 2010, 2, 510. [CrossRef] [PubMed] 16. Liu, Y.; He, D.; Han, R.; Wei, G.; Qiao, Y. Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries. Chem. Commun. 2017, 53, 5569–5572. [CrossRef]

PDF Image | Ga2Te3-Based Anodes for Sodium-Ion Batteries

ga2te3-based-anodes-sodium-ion-batteries-012

PDF Search Title:

Ga2Te3-Based Anodes for Sodium-Ion Batteries

Original File Name Searched:

materials-15-06231.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP