Hard Carbons as Anodes in Sodium-Ion Batteries

PDF Publication Title:

Hard Carbons as Anodes in Sodium-Ion Batteries ( hard-carbons-as-anodes-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 027

Molecules 2022, 27, 6516 27 of 32 References development of SIBs and is in a continuing process of development. To cater for the various energy demands, from small electronic products to large-scale power grid storage, an HC anode plays an integral role, which could push battery technology into a low-cost, high-performance, safer, and more stable direction. It will continue to receive the attention of enterprises and researchers. Author Contributions: Conceptualization, L.L.; writing—original draft preparation, L.L.; writing—review and editing, L.L., Y.T., A.A., M.R.H.S.G., W.Z. and G.X.; supervision, G.X.; fund- ing acquisition, A.A., W.Z. and G.X. All authors have read and agreed to the published version of the manuscript. Funding: This research was funded by the National Natural Science Foundation of China (No. 22004116, 22174136 and 21874126), and China Scholarship Council (No. 2017GXZ021380). Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Conflicts of Interest: The authors declare no conflict of interest. 1. Megahed, S.; Scrosati, B. Lithium-ion rechargeable batteries. J. Power Source 1994, 51, 79–104. [CrossRef] 2. Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [CrossRef] [PubMed] 3. Armand, M.; Tarascon, J.M. Building better batteries. Nature 2008, 451, 652–657. [CrossRef] 4. Zhao, H.; Wu, Q.; Hu, S.; Xu, H.; Rasmussen, C.N. Review of energy storage system for wind power integration support. Appl. Energy 2015, 137, 545–553. [CrossRef] 5. Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global Lithium Availability. J. Ind. Ecol. 2011, 15, 760–775. [CrossRef] 6. Vikström, H.; Davidsson, S.; Höök, M. Lithium availability and future production outlooks. Appl. Energy 2013, 110, 252–266. [CrossRef] 7. Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035. [CrossRef] 8. Kubota, K.; Komaba, S. Review—Practical Issues and Future Perspective for Na-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2538–A2550. [CrossRef] 9. Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [CrossRef] 10. Bianchini, M.; Fauth, F.; Brisset, N.; Weill, F.; Suard, E.; Masquelier, C.; Croguennec, L. Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction. Chem. Mater. 2015, 27, 3009–3020. [CrossRef] 11. Zhang, X.; Rui, X.; Chen, D.; Tan, H.; Yang, D.; Huang, S.; Yu, Y. Na3 V2 (PO4 )3 : An advanced cathode for sodium-ion batteries. Nanoscale 2019, 11, 2556–2576. [CrossRef] [PubMed] 12. Vassilaras, P.; Toumar, A.J.; Ceder, G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochem. Commun. 2014, 38, 79–81. [CrossRef] 13. Park, S.; Song, J.; Kim, S.; Sambandam, B.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Kim, J. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Res. 2019, 12, 911–917. [CrossRef] 14. Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J.B. A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967. [CrossRef] 15. Mu, L.; Ben, L.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room- temperature sodium-ion batteries. J. Mater. Chem. A 2016, 4, 7141–7147. [CrossRef] 16. Senguttuvan, P.; Rousse, G.; Vezin, H.; Tarascon, J.M.; Palacín, M.R. Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries. Chem. Mater. 2013, 25, 2391–2393. [CrossRef] 17. Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M.R. Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mater. 2011, 23, 4109–4111. [CrossRef] 18. Hariharan, S.; Saravanan, K.; Balaya, P. α-MoO3: A high performance anode material for sodium-ion batteries. Electrochem. Commun. 2013, 31, 5–9. [CrossRef] 19. Gao, L.; Lu, D.; Yang, Y.; Guan, R.; Zhang, D.; Sun, C.; Liu, S.; Bian, X. Amorphous TiO2-x modified Sb nanowires as a high-performance sodium-ion battery anode. J. Non-Cryst. Solids 2022, 581, 121396. [CrossRef]

PDF Image | Hard Carbons as Anodes in Sodium-Ion Batteries

PDF Search Title:

Hard Carbons as Anodes in Sodium-Ion Batteries

Original File Name Searched:

molecules-27-06516-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)