logo

Hard Carbons as Anodes in Sodium-Ion Batteries

PDF Publication Title:

Hard Carbons as Anodes in Sodium-Ion Batteries ( hard-carbons-as-anodes-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 031

Molecules 2022, 27, 6516 31 of 32 100. Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. Amorphous monodispersed hard carbon micro- spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77. [CrossRef] 101. Hou,H.;Banks,C.E.;Jing,M.;Zhang,Y.;Ji,X.CarbonQuantumDotsandTheirDerivative3DPorousCarbonFrameworksfor Sodium-Ion Batteries with Ultralong Cycle Life. Adv. Mater. 2015, 27, 7861–7866. [CrossRef] [PubMed] 102. Li,D.;Chen,H.;Liu,G.;Wei,M.;Ding,L.-X.;Wang,S.;Wang,H.Porousnitrogendopedcarbonsphereashighperformance anode of sodium-ion battery. Carbon 2015, 94, 888–894. [CrossRef] 103. Ni, D.; Sun, W.; Wang, Z.; Bai, Y.; Lei, H.; Lai, X.; Sun, K. Heteroatom-Doped Mesoporous Hollow Carbon Spheres for Fast Sodium Storage with an Ultralong Cycle Life. Adv. Energy Mater. 2019, 9, 1900036. [CrossRef] 104. Xia, J.; Yan, D.; Guo, L.; Dong, X.; Li, W.; Lu, A. Hard Carbon Nanosheets with Uniform Ultramicropores and Accessible Functional Groups Showing High Realistic Capacity and Superior Rate Performance for Sodium-Ion Storage. Adv. Mater. 2020, 32, e2000447. [CrossRef] 105. Su,D.;Huang,M.;Zhang,J.;Guo,X.;Chen,J.;Xue,Y.;Yuan,A.;Kong,Q.HighN-dopedhierarchicalporouscarbonnetworks with expanded interlayers for efficient sodium storage. Nano Res. 2020, 13, 2862–2868. [CrossRef] 106. Wan,Y.;Song,K.;Chen,W.;Qin,C.;Zhang,X.;Zhang,J.;Dai,H.;Hu,Z.;Yan,P.;Liu,C.;etal.Ultra-HighInitialCoulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angew. Chem. Int. Ed. 2021, 60, 11481–11486. [CrossRef] 107. Yu,Z.-E.;Lyu,Y.;Wang,Y.;Xu,S.;Cheng,H.;Mu,X.;Chu,J.;Chen,R.;Liu,Y.;Guo,B.Hardcarbonmicro-nanotubesderived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem. Commun. 2020, 56, 778–781. [CrossRef] 108. Lyu,T.;Lan,X.;Liang,L.;Lin,X.;Hao,C.;Pan,Z.;Tian,Z.Q.;Shen,P.K.Naturalmushroomsporesderivedhardcarbonplatesfor robust and low-potential sodium ion storage. Electrochim. Acta 2021, 365, 137356. [CrossRef] 109. Pei,L.;Yang,L.;Cao,H.;Liu,P.;Zhao,M.;Xu,B.;Guo,J.Cost-effectiveandrenewablepaperderivedhardcarbonmicrofibersas superior anode for sodium-ion batteries. Electrochim. Acta 2020, 364, 137313. [CrossRef] 110. Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104. [CrossRef] 111. Xie,F.;Xu,Z.;Jensen,A.C.S.;Au,H.;Lu,Y.;Araullo-Peters,V.;Drew,A.J.;Hu,Y.-S.;Titirici,M.-M.Hard–SoftCarbonComposite Anodes with Synergistic Sodium Storage Performance. Adv. Funct. Mater. 2019, 29, 1901072. [CrossRef] 112. He, X.-X.; Zhao, J.-H.; Lai, W.-H.; Li, R.; Yang, Z.; Xu, C.-M.; Dai, Y.; Gao, Y.; Liu, X.-H.; Li, L.; et al. Soft-Carbon-Coated, Free-Standing, Low-Defect, Hard-Carbon Anode to Achieve a 94% Initial Coulombic Efficiency for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 44358–44368. [CrossRef] [PubMed] 113. Liu,M.;Zhang,P.;Qu,Z.;Yan,Y.;Lai,C.;Liu,T.;Zhang,S.Conductivecarbonnanofiberinterpenetratedgraphenearchitecture for ultra-stable sodium ion battery. Nat. Commun. 2019, 10, 3917. [CrossRef] [PubMed] 114. Lu,H.;Chen,X.;Jia,Y.;Chen,H.;Wang,Y.;Ai,X.;Yang,H.;Cao,Y.EngineeringAl2O3atomiclayerdeposition:Enhancedhard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903. [CrossRef] 115. Hou,C.;Yang,W.;Xie,X.;Sun,X.;Wang,J.;Naik,N.;Pan,D.;Mai,X.;Guo,Z.;Dang,F.;etal.Agaric-likeanodesofporous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid. Interface Sci. 2021, 596, 396–407. [CrossRef] 116. Zhang, D.; Sun, W.; Zhang, Y.; Dou, Y.; Jiang, Y.; Dou, S.X. Engineering Hierarchical Hollow Nickel Sulfide Spheres for High-Performance Sodium Storage. Adv. Funct. Mater. 2016, 26, 7479–7485. [CrossRef] 117. Zhao, X.; Gong, F.; Zhao, Y.; Huang, B.; Qian, D.; Wang, H.-E.; Zhang, W.; Yang, Z. Encapsulating NiS nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem. Eng. J. 2020, 392, 123675. [CrossRef] 118. Yang, M.; Ning, Q.; Fan, C.; Wu, X. Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin. Chem. Lett. 2021, 32, 895–899. [CrossRef] 119. Zhang,C.;Wei,D.;Wang,F.;Zhang,G.;Duan,J.;Han,F.;Duan,H.;Liu,J.HighlyactiveFe7S8encapsulatedinN-dopedhollow carbon nanofibers for high-rate sodium-ion batteries. J. Energy Chem. 2021, 53, 26–35. [CrossRef] 120. Cao,L.;Gao,X.;Zhang,B.;Ou,X.;Zhang,J.;Luo,W.B.BimetallicSulfideSb2S3@FeS2HollowNanorodsasHigh-Performance Anode Materials for Sodium-Ion Batteries. ACS Nano 2020, 14, 3610–3620. [CrossRef] 121. Zhao,W.;Gao,L.;Yue,L.;Wang,X.;Liu,Q.;Luo,Y.;Li,T.;Shi,X.;Asiri,A.M.;Sun,X.Constructingahollowmicroflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode. J. Mater. Chem. A 2021, 9, 6402–6412. [CrossRef] 122. Wang,S.;Fang,Y.;Wang,X.;Lou,X.-W.HierarchicalMicroboxesConstructedbySnSNanoplatesCoatedwithNitrogen-Doped Carbon for Efficient Sodium Storage. Angew. Chem. Int. Ed. 2019, 58, 760–763. [CrossRef] 123. Fang, Y.; Luan, D.; Chen, Y.; Gao, S.; Lou, X.W.D. Rationally Designed Three-Layered Cu2 S@Carbon@MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage. Angew. Chem. Int. Ed. 2020, 59, 7178–7183. [CrossRef] [PubMed] 124. Zhang, Z.; Huang, Y.; Liu, X.; Wang, X.; Liu, P. Core–Shell Co, Zn Bimetallic Selenide Embedded Nitrogen-Doped Carbon Polyhedral Frameworks Assist in Sodium-Ion Battery Ultralong Cycle. ACS Sustain. Chem. Eng. 2020, 8, 8381–8390. [CrossRef]

PDF Image | Hard Carbons as Anodes in Sodium-Ion Batteries

hard-carbons-as-anodes-sodium-ion-batteries-031

PDF Search Title:

Hard Carbons as Anodes in Sodium-Ion Batteries

Original File Name Searched:

molecules-27-06516-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP