Hard Carbons as Anodes in Sodium-Ion Batteries

PDF Publication Title:

Hard Carbons as Anodes in Sodium-Ion Batteries ( hard-carbons-as-anodes-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 032

Molecules 2022, 27, 6516 32 of 32 125. He,H.;Sun,D.;Tang,Y.;Wang,H.;Shao,M.UnderstandingandimprovingtheinitialCoulombicefficiencyofhigh-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251. [CrossRef] 126. Ponrouch,A.;Marchante,E.;Courty,M.;Tarascon,J.-M.;Palacín,M.R.InsearchofanoptimizedelectrolyteforNa-ionbatteries. Energy Environ. Sci. 2012, 5, 8572–8583. [CrossRef] 127. Kamath,G.;Cutler,R.W.;Deshmukh,S.A.;Shakourian-Fard,M.;Parrish,R.;Huether,J.;Butt,D.P.;Xiong,H.;Sankaranarayanan, S.K.R.S. In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications. J. Phys. Chem. C 2014, 118, 13406–13416. [CrossRef] 128. Schafzahl,L.;Hanzu,I.;Wilkening,M.;Freunberger,S.A.AnElectrolyteforReversibleCyclingofSodiumMetalandIntercalation Compounds. ChemSusChem 2017, 10, 401–408. [CrossRef] 129. Zhu,Y.-E.;Yang,L.;Zhou,X.;Li,F.;Wei,J.;Zhou,Z.Boostingtheratecapabilityofhardcarbonwithanether-basedelectrolyte for sodium ion batteries. J. Mater. Chem. A 2017, 5, 9528–9532. [CrossRef] 130. Zhang, J.; Wang, D.-W.; Lv, W.; Zhang, S.; Liang, Q.; Zheng, D.; Kang, F.; Yang, Q.-H. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 2017, 10, 370–376. [CrossRef] 131. Tang, Z.; Zhou, S.; Wu, P.; Wang, H.; Huang, Y.; Zhang, Y.; Sun, D.; Tang, Y.; Wang, H. Engineering surface oxygenated functionalities on commercial hard carbon toward superior sodium storage. Chem. Eng. J. 2022, 441, 135899. [CrossRef] 132. Sun,D.;Luo,B.;Wang,H.;Tang,Y.;Ji,X.;Wang,L.Engineeringthetrapeffectofresidualoxygenatomsanddefectsinhard carbon anode towards high initial Coulombic efficiency. Nano Energy 2019, 64, 103937. [CrossRef] 133. Xiao, B.; Soto, F.A.; Gu, M.; Han, K.S.; Song, J.; Wang, H.; Engelhard, M.H.; Murugesan, V.; Mueller, K.T.; Reed, D.; et al. Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes. Adv. Energy Mater. 2018, 8, 1801441. [CrossRef] 134. Wang,H.;Xiao,Y.;Sun,C.;Lai,C.;Ai,X.Atypeofsodium-ionfull-cellwithalayeredNaNi0.5Ti0.5O2cathodeandapre-sodiated hard carbon anode. RSC Adv. 2015, 5, 106519–106522. [CrossRef] 135. Liu, M.; Zhang, J.; Guo, S.; Wang, B.; Shen, Y.; Ai, X.; Yang, H.; Qian, J. Chemically Presodiated Hard Carbon Anodes with Enhanced Initial Coulombic Efficiencies for High-Energy Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 17620–17627. [CrossRef] 136. Bai,P.;He,Y.;Xiong,P.;Zhao,X.;Xu,K.;Xu,Y.Longcyclelifeandhighratesodium-ionchemistryforhardcarbonanodes. Energy Storage Mater. 2018, 13, 274–282. [CrossRef] 137. Zhang,B.;Dugas,R.;Rousse,G.;Rozier,P.;Abakumov,A.M.;Tarascon,J.-M.Insertioncompoundsandcompositesmadebyball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308. [CrossRef] [PubMed] 138. deIlarduya,J.M.;Otaegui,L.;delAmo,J.M.L.;Armand,M.;Singh,G.NaN3addition,astrategytoovercometheproblemof sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery. J. Power Source 2017, 337, 197–203. [CrossRef] 139. Li,Y.;Du,Y.F.;Sun,G.H.;Cheng,J.Y.;Song,G.;Song,M.X.;Su,F.Y.;Yang,F.;Xie,L.J.;Chen,C.M.Self-standinghardcarbonanode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries. EcoMat 2021, 3, e12091. [CrossRef] 140. Sun,D.;Zhu,X.;Luo,B.;Zhang,Y.;Tang,Y.;Wang,H.;Wang,L.NewBinder-FreeMetalPhosphide–CarbonFeltComposite Anodes for Sodium-Ion Battery. Adv. Energy Mater. 2018, 8, 1801197. [CrossRef] 141. Yang, H.; Xu, R.; Yu, Y. A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic Efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose. Energy Storage Mater. 2019, 22, 105–112. [CrossRef] 142. Hou,B.H.;Wang,Y.Y.;Ning,Q.L.;Li,W.H.;Xi,X.T.;Yang,X.;Liang,H.J.;Feng,X.;Wu,X.L.Self-Supporting,Flexible,Additive- Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: Superb Room/Low-Temperature Sodium Storage and Working Mechanism. Adv. Mater. 2019, 31, e1903125. [CrossRef] [PubMed] 143. Wang,D.;Du,G.;Han,D.;Su,Q.;Ding,S.;Zhang,M.;Zhao,W.;Xu,B.Porousflexiblenitrogen-richcarbonmembranesderived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries. Carbon 2021, 181, 1–8. [CrossRef] 144. Wang,P.;Zhu,K.;Ye,K.;Gong,Z.;Liu,R.;Cheng,K.;Wang,G.;Yan,J.;Cao,D.Three-dimensionalbiomassderivedhardcarbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J. Colloid. Interface Sci. 2020, 561, 203–210. [CrossRef] 145. Dong,R.;Zheng,L.;Bai,Y.;Ni,Q.;Li,Y.;Wu,F.;Ren,H.;Wu,C.ElucidatingtheMechanismofFastNaStorageKineticsinEther Electrolytes for Hard Carbon Anodes. Adv. Mater. 2021, 33, e2008810. [CrossRef] 146. Deng,J.;Luo,W.-B.;Chou,S.-L.;Liu,H.-K.;Dou,S.-X.Sodium-IonBatteries:FromAcademicResearchtoPracticalCommercial- ization. Adv. Energy Mater. 2018, 8, 1701428. [CrossRef] 147. Wan,Y.;Qiu,Y.;Wang,C.;Zhang,H.;Zheng,Q.;Li,X.Enablingsuperiorratecapabilityandreliablesodiumionbatteriesby employing galvanostatic-potentiostatic operation mode. J. Power Source 2021, 496, 229834. [CrossRef] 148. Zhao,L.F.;Hu,Z.;Lai,W.H.;Tao,Y.;Peng,J.;Miao,Z.C.;Wang,Y.X.;Chou,S.L.;Liu,H.K.;Dou,S.X.HardCarbonAnodes: Fundamental Understanding and Commercial Perspectives for Na-Ion Batteries beyond Li-Ion and K-Ion Counterparts. Adv. Energy Mater. 2020, 11, 2002704. [CrossRef] 149. Hirsh,H.S.;Li,Y.;Tan,D.H.S.;Zhang,M.;Zhao,E.;Meng,Y.S.Sodium-IonBatteriesPavingtheWayforGridEnergyStorage. Adv. Energy Mater. 2020, 10, 2001274. [CrossRef] 150. Hu, Y.S.; Komaba, S.; Forsyth, M.; Johnson, C.; Rojo, T. A New Emerging Technology: Na-Ion Batteries. Small Methods 2019, 3, 1900184. [CrossRef]

PDF Image | Hard Carbons as Anodes in Sodium-Ion Batteries

PDF Search Title:

Hard Carbons as Anodes in Sodium-Ion Batteries

Original File Name Searched:

molecules-27-06516-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)