logo

Morphology Derived Coconut Sheath for Sodium-Ion Battery

PDF Publication Title:

Morphology Derived Coconut Sheath for Sodium-Ion Battery ( morphology-derived-coconut-sheath-sodium-ion-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 019

Energies 2022, 15, 8086 19 of 20 5. Qu, D. Fundamental principles of battery design: Porous electrodes. In AIP Conference Proceedings; American Institute of Physics, AIP publishing: New York, NY, USA, 2014; Volume 1597, pp. 14–25. 6. Ranaweera, C.K.; Kahol, P.K.; Ghimire, M.; Mishra, S.R.; Gupta, R.K. Orange-peel-derived carbon: Designing sustainable and high-performance supercapacitor electrodes. C 2017, 3, 25. [CrossRef] 7. Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Tan, X.; Lotfabad, E.M.; Olsen, B.C. Carbon Nanosheet Frameworks Derived from Peat Moss as High-Performance Sodium Ion Battery Anodes. ACS Nano 2013, 7, 11004–11015. [CrossRef] [PubMed] 8. Memarzadeh Lotfabad, E.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W.P.; Hazelton, M.; Mitlin, D.; Lotfabad, E.M.; Ding, J.; Cui, K. High-Density Sodium and Lithium-Ion Battery Anodes from Banana Peels. ACS Nano 2014, 8, 7115–7129. [CrossRef] 9. Wang, P.; Qiao, B.; Du, Y.; Li, Y.; Zhou, X.; Dai, Z.; Bao, J. Fluorine-Doped Carbon Particles Derived from Lotus Petioles as High-Performance Anode Materials for Sodium-Ion Batteries. J. Phys. Chem. C 2015, 119, 21336–21344. [CrossRef] 10. Zhao, H.; Gao, Y.; Wang, J.; Chen, C.; Chen, D.; Wang, C.; Ciucci, F. Egg Yolk-Derived Phosphorus and Nitrogen Dual Doped Nano Carbon Capsules for High-Performance Lithium-Ion Batteries. Mater. Lett. 2016, 167, 93–97. [CrossRef] 11. Cao, X.; Chen, S.; Wang, G. Porous Carbon Particles Derived from Natural Peanut Shells as Lithium-Ion Battery Anode and Its Electrochemical Properties. Electron. Mater. Lett. 2014, 10, 819–826. [CrossRef] 12. Shen, F.; Luo, W.; Dai, J.; Yao, Y.; Zhu, M.; Hitz, E.; Li, X. Ultra-Thick, Low-Tortuosity, and Mesoporous Wood Carbon Anode for High-Performance Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600377. [CrossRef] 13. Lv, W.; Wen, F.; Xiang, J.; Zhao, J.; Li, L.; Wang, L.; Liu, Z.; Tian, Y. Peanut Shell Derived Hard Carbon as Ultralong Cycling Anodes for Lithium and Sodium Batteries. Electrochim. Acta 2015, 176, 533–541. [CrossRef] 14. Shen, F.; Zhu, H.; Luo, W.; Wan, J.; Zhou, L.; Dai, J.; Zhao, B.; Han, X.; Fu, K.; Hu, L. Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 23291–23296. [CrossRef] [PubMed] 15. Yang, T.; Qian, T.; Wang, M.; Shen, X.; Xu, N.; Sun, Z.; Yan, C.A. Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen-Doped Carbon Sheets for Efficient Sodium Ion Batteries. Adv. Mater. 2016, 28, 539–545. [CrossRef] [PubMed] 16. Meenatchi, T.; Priyanka, V.; Subadevi, R.; Liu, W.R.; Huang, C.H.; Sivakumar, M. Probe on hard carbon electrode derived from orange peel for energy storage application. Carbon Lett. 2021, 31, 1033–1039. [CrossRef] 17. Gunn, B.F.; Baudouin, L.; Olsen, K.M. Independent origins of cultivated Coconut (Cocos nucifera L.) in the old world tropics. PLoS ONE 2011, 6, e21143. [CrossRef] 18. Jose, N. Coconut Leaf—Sheath Scales as an Effective Medicine for Wound Healing. 2006. Available online: https://www. researchgate.net/publication/260208418_Coconut_Leaf-sheath_Scales_as_an_Effective_Medicine_for_Wound_Healing (accessed on 8 October 2022). 19. Khornia, D.L.L.F.; Rita, D.R.; Nurk, S. Analysis comparison npp thorium fuel as an alternative energy sources. Inovari Tek. Kim. 2017, 11, 32–38. 20. Muruganantham, R.; Sivakumar, M.; Subadevi, R.; Wu, N.L. A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high-temperature methods. J. Mater. Sci. Mater. Electron. 2015, 26, 2095–2106. [CrossRef] 21. Srinivasan, V.S.; Boopathy, S.R.; Sangeetha, D.; Ramnath, B.V. Evaluation of mechanical and thermal properties of banana–flax based natural fibre composite. Mater. Des. 2014, 60, 620–627. [CrossRef] 22. Short, M.A.; Walker, J.P.L. Measurement of interlayer spacings and crystal sizes in turbostratic carbons. Carbon 1963, 1, 3–9. [CrossRef] 23. Wang, K.; Jin, Y.; Sun, S.; Huang, Y.; Peng, J.; Luo, J.; Zhang, Q.; Qiu, Y.; Fang, C.; Han, J. Low-cost and High-performance hard carbon anode materials for sodium-ion batteries. ACS Omega 2017, 2, 1687–1695. [CrossRef] 24. Krishnaveni, K.; Subadevi, R.; Raja, M.; Premkumar, T.; Sivakumar, M. Sulfur/PAN/acetylene black composite prepared by a solution processing technique for lithium-sulfur batteries. J. Appl. Polym. Sci. 2018, 135, 46598. 25. Poddar, P.; Asad, M.A.; Islam, M.S.; Sultana, S.; Nur, H.P.; Chowdhury, A.S. Mechanical and morphological study of arecanut leaf sheath (ALS), coconut leaf sheath (CLS) and coconut stem fiber (CSF). Adv. Mater. Sci. 2016, 1, 1–4. [CrossRef] 26. Pandey, K.K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [CrossRef] 27. Rao, X.; Lou, Y.; Chen, J.; Lu, H.; Cheng, B.; Wang, W.; Fang, H.; Li, H.; Zhong, S. Polyacrylonitrile hard carbon as anode for high-rate capability for lithium-ion batteries. Front. Energy Res. 2020, 8, 3. [CrossRef] 28. Rochman, R.A.; Wahyuningsih, S.; Ramelan, A.H.; Hanif, Q.A. Preparation of nitrogen and sulphur Co-doped reduced graphene oxide (rGO-NS) using N and S heteroatom of thiourea. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012119. [CrossRef] 29. Satyanarayana, K.; Pillai, C.K.S.; Sukumaran, K.; Pillai, S.G.K. Structure property studies of fibres from various parts of the coconut tree. J. Mater. Sci. 1982, 17, 2453–2462. [CrossRef] 30. Lillo-Rodenas, M.A.; Cazorla-Amoros, D.; Linares-Solano, A. Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism. Carbon 2003, 41, 267–275. [CrossRef] 31. Lillo-Rodenas, M.A.; Juan-Juan, J.; Cazorla-Amoros, D.; Linares-Solano, A. About reactions occurring during chemical activation with hydroxides. Carbon 2004, 42, 1371–1375. [CrossRef] 32. Xu, B.; Chen, Y.; Wei, G.; Cao, G.; Zhang, H.; Yang, Y. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors. Mater. Chem. Phys. 2010, 124, 504–509. [CrossRef]

PDF Image | Morphology Derived Coconut Sheath for Sodium-Ion Battery

morphology-derived-coconut-sheath-sodium-ion-battery-019

PDF Search Title:

Morphology Derived Coconut Sheath for Sodium-Ion Battery

Original File Name Searched:

energies-15-08086.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP