Na Ion Batteries Used at Low Temperatures

PDF Publication Title:

Na Ion Batteries Used at Low Temperatures ( na-ion-batteries-used-at-low-temperatures )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 027

Nanomaterials 2022, 12, 3529 27 of 29 29. Liu, R.; Xu, G.; Li, Q.; Zheng, S.; Zheng, G.; Gong, Z.; Li, Y.; Kruskop, E.; Fu, R.; Chen, Z. Exploring highly reversible 1.5-electron reactions(V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43632–43639. [CrossRef] 30. Liu, R.; Zheng, S.; Yuan, Y.; Yu, P.; Liang, Z.; Zha, W.; Shahbazian-Yassar, R.; Ding, J.; Lu, J.; Yang, Y. Counter-Intuitive Structural Instability Aroused by Transition Metal Migration in Polyanionic Sodium Ion Host. Adv. Energy Mater. 2021, 11, 2003256. [CrossRef] 31. Liu, T.; Wang, B.; Gu, X.; Wang, L.; Ling, M.; Liu, G.; Wang, D.; Zhang, S. All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy 2016, 30, 756–761. [CrossRef] 32. Wang, C.; Du, D.; Song, M.; Wang, Y.; Li, F. A high-power Na3V2(PO4) 3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 2019, 9, 1900022. [CrossRef] 33. Hwang, J.; Matsumoto, K.; Hagiwara, R. Na3 V2 (PO4 )3 /C positive electrodes with high energy and power densities for sodium secondary batteries with ionic liquid electrolytes that operate across wide temperature ranges. Adv. Sustain. Syst. 2018, 2, 1700171. [CrossRef] 34. Wang, J.; Wang, Y.; Seo, D.H.; Shi, T.; Chen, S.; Tian, Y.; Kim, H.; Ceder, G. A High-Energy NASICON-Type Cathode Material for Na-Ion Batteries. Adv. Energy Mater. 2020, 10, 1903968. [CrossRef] 35. Cao, Y.; Liu, Y.; Zhao, D.; Xia, X.; Zhang, L.; Zhang, J.; Yang, H.; Xia, Y. Highly stable Na3Fe2(PO4)3@ hard carbon sodium-ion full cell for low-cost energy storage. ACS Sustain. Chem. Eng. 2019, 8, 1380–1387. [CrossRef] 36. Liang, L.W.; Li, X.Y.; Zhao, F.; Zhang, J.Y.; Liu, Y.; Hou, L.R.; Yuan, C.Z. Construction and Operating Mechanism of High-Rate Mo-Doped Na3V2(PO4)3@C Nanowires toward Practicable Wide-Temperature-Tolerance Na-Ion and Hybrid Li/Na-Ion Batteries. Adv. Energy Mater. 2021, 11, 2100287. [CrossRef] 37. Li, X.; Zhang, Y.; Zhang, B.; Qin, K.; Liu, H.; Ma, Z.F. Mn-doped Na4Fe3(PO4)2(P2O7) facilitating Na+ migration at low temperature as a high-performance cathode material of sodium ion batteries. J. Power Sources 2022, 521, 230922. [CrossRef] 38. Broux, T.; Fauth, F.; Hall, N.; Chatillon, Y.; Bianchini, M.; Bamine, T.; Leriche, J.b.; Suard, E.; Carlier, D.; Reynier, Y. High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-Ion Batteries. Small Methods 2019, 3, 1800215. [CrossRef] 39. Guo, J.Z.; Wang, P.F.; Wu, X.L.; Zhang, X.H.; Yan, Q.; Chen, H.; Zhang, J.P.; Guo, Y.G. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance. Adv. Mater. 2017, 29, 1701968. [CrossRef] 40. Li, J.; Du, G.; Huang, T.; Zhang, F.; Xie, M.; Qi, Y.; Bao, S.J.; Xu, M. Na3V2O2(PO4)2F Cathode for High-Performance Quasi-Solid- State Sodium-Ion Batteries with a Wide Workable Temperature Range. Energy Technol. 2020, 8, 2000494. [CrossRef] 41. Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 2019, 10, 1–11. [CrossRef] 42. Ponrouch, A.; Palacín, M. On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study. Electrochem. Commun. 2015, 54, 51–54. [CrossRef] 43. Hou, B.H.; Wang, Y.Y.; Ning, Q.L.; Li, W.H.; Xi, X.T.; Yang, X.; Liang, H.J.; Feng, X.; Wu, X.L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 2019, 31, 1903125. [CrossRef] [PubMed] 44. Lin, X.; Du, X.; Tsui, P.S.; Huang, J.Q.; Tan, H.; Zhang, B. Exploring room-and low-temperature performance of hard carbon material in half and full Na-ion batteries. Electrochim. Acta 2019, 316, 60–68. [CrossRef] 45. Yang, J.; Wang, X.; Dai, W.; Lian, X.; Cui, X.; Zhang, W.; Zhang, K.; Lin, M.; Zou, R.; Loh, K.P. From micropores to ultra-micropores inside hard carbon: Toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 2021, 13, 1–14. [CrossRef] 46. Wang, Y.Y.; Hou, B.H.; Guo, J.Z.; Ning, Q.L.; Pang, W.L.; Wang, J.; Lv, C.L.; Wu, X.L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252. [CrossRef] 47. Zhou, L.F.; Gao, X.W.; Du, T.; Gong, H.; Liu, L.Y.; Luo, W.B. Two-dimensional NbSSe as anode material for low-temperature sodium-ion batteries. Chem. Eng. J. 2022, 435, 134838. [CrossRef] 48. Zhou, X.; Ding, S.; He, H.; Huang, Z.; Cai, M.; Cai, Y.; Zhang, M. Encapsulated SnSe in carbon nanofibers as anode of sodium ion batteries with improved properties. Ionics 2020, 26, 3937–3946. [CrossRef] 49. Zhou, Y.; Sun, X.; Fan, A.; Shang, Y.; Xiong, K.; Guo, J.; Jin, S.; Cai, S.; Zheng, C. ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network as high-rate and freeze-resistant anode materials for sodium-ion batteries. Appl. Surf. Sci. 2021, 538, 148194. [CrossRef] 50. Fan, H.H.; Li, H.H.; Wang, Z.W.; Li, W.L.; Guo, J.Z.; Fan, C.Y.; Sun, H.Z.; Wu, X.L.; Zhang, J.P. Tailoring coral-like Fe7Se8@C for superior low-temperature Li/Na-ion half/full batteries: Synthesis, structure, and DFT studies. ACS Appl. Mater. Interfaces 2019, 11, 47886–47893. [CrossRef] [PubMed] 51. Tian, Y.; Lu, J.; Tang, H.; Wang, X.; Zhang, L.; Hu, P.; Zhou, L.; Wang, Y.; Guo, Y.; Khatoon, R. An ultra-stable anode material for high/low-temperature workable super-fast charging sodium-ion batteries. Chem. Eng. J. 2021, 422, 130054. [CrossRef] 52. Hu, Q.; Yu, M.; Liao, J.; Wen, Z.; Chen, C. Porous carbon-coated NaTi2(PO4)3 with superior rate and low-temperature properties. J. Mater. Chem. A 2018, 6, 2365–2370. [CrossRef] 53. Reber, D.; Kühnel, R.S.; Battaglia, C. Suppressing crystallization of water-in-salt electrolytes by asymmetric anions enables low-temperature operation of high-voltage aqueous batteries. ACS Mater. Lett. 2019, 1, 44–51. [CrossRef]

PDF Image | Na Ion Batteries Used at Low Temperatures

PDF Search Title:

Na Ion Batteries Used at Low Temperatures

Original File Name Searched:

nanomaterials-12-03529-v4.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)