logo

Na Ion Batteries Used at Low Temperatures

PDF Publication Title:

Na Ion Batteries Used at Low Temperatures ( na-ion-batteries-used-at-low-temperatures )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 028

Nanomaterials 2022, 12, 3529 28 of 29 54. Nian, Q.; Liu, S.; Liu, J.; Zhang, Q.; Shi, J.; Liu, C.; Wang, R.; Tao, Z.; Chen, J. All-climate aqueous dual-ion hybrid battery with ultrahigh rate and ultralong life performance. ACS Appl. Energy Mater. 2019, 2, 4370–4378. [CrossRef] 55. Li, Q.; Jiang, K.; Li, X.; Qiao, Y.; Zhang, X.; He, P.; Guo, S.; Zhou, H. A High-Crystalline NaV1.25Ti0.75O4 Anode for Wide- Temperature Sodium-Ion Battery. Adv. Energy Mater. 2018, 8, 1801162. [CrossRef] 56. Vignarooban, K.; Kushagra, R.; Elango, A.; Badami, P.; Mellander, B.-E.; Xu, X.; Tucker, T.; Nam, C.; Kannan, A.M. Current trends and future challenges of electrolytes for sodium-ion batteries. Int. J. Hydrog. Energy 2016, 41, 2829–2846. [CrossRef] 57. Weadock, N.; Varongchayakul, N.; Wan, J.; Lee, S.; Seog, J.; Hu, L. Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy. Nano Energy 2013, 2, 713–719. [CrossRef] 58. Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958. [CrossRef] 59. Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.M.; Palacin, M.R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583. [CrossRef] 60. Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.S.; Chen, L. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012. [CrossRef] 61. Zhu, X.; Wang, L. Advances in materials for all-climate sodium-ion batteries. EcoMat 2020, 2, e12043. [CrossRef] 62. Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251. [CrossRef] [PubMed] 63. Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: From scientific research to practical application. Adv. Mater. 2019, 31, 1808393. [CrossRef] [PubMed] 64. Lianmei, W.; Xixi, Y.; Suna, Z.; Jie, Z.; Minchang, W.; Yongmin, Q.; Lijun, W. Progress of low-temperature electrolyte for lithium-ion battery. Energy Storage Sci. Technol. 2017, 6, 69. 65. Zheng, X.; Gu, Z.; Fu, J.; Wang, H.; Ye, X.; Huang, L.; Liu, X.; Wu, X.; Luo, W.; Huang, Y. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947. [CrossRef] 66. Chua, R.; Cai, Y.; Lim, P.Q.; Kumar, S.; Satish, R.; Manalastas Jr, W.; Ren, H.; Verma, V.; Meng, S.; Morris, S.A. Hydrogen-Bonding Interactions in Hybrid Aqueous/Nonaqueous Electrolytes Enable Low-Cost and Long-Lifespan Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2020, 12, 22862–22872. [CrossRef] [PubMed] 67. Kruk, D.; Jancelewicz, M.; Klimaszyk, A.; Markiewicz, R.; Fojud, Z.; Jurga, S. Internal Dynamics of Ionic Liquids over a Broad Temperature Range—The Role of the Cation Structure. Materials 2021, 15, 216. [CrossRef] 68. Bellusci, M.; Simonetti, E.; De Francesco, M.; Appetecchi, G.B. Ionic liquid electrolytes for safer and more reliable sodium battery systems. Appl. Sci. 2020, 10, 6323. [CrossRef] 69. Ding, C.; Nohira, T.; Fukunaga, A.; Hagiwara, R. Charge-discharge performance of an ionic liquid-based sodium secondary battery in a wide temperature range. Electrochemistry 2015, 83, 91–94. [CrossRef] 70. Chen, C.Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R.; Fukunaga, A.; Sakai, S.; Nitta, K.; Inazawa, S. Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA. J. Power Sources 2013, 237, 52–57. [CrossRef] 71. Moreno, J.S.; Maresca, G.; Panero, S.; Scrosati, B.; Appetecchi, G. Sodium-conducting ionic liquid-based electrolytes. Electrochem. Commun. 2014, 43, 1–4. [CrossRef] 72. Na, Z.; Feng, W.; Chuan, W.; Ying, B.; Yitong, L. Recent advances of electrolytes for sodium-ion batteries. Energy Storage Sci. Technol. 2016, 5, 285. 73. Havemeyer, R.N. Freezing point curve of dimethyl sulfoxide—Water solutions. J. Pharm. Sci. 1966, 55, 851–853. [CrossRef] [PubMed] 74. Nian, Q.; Wang, J.; Liu, S.; Sun, T.; Zheng, S.; Zhang, Y.; Tao, Z.; Chen, J. Aqueous batteries operated at −50 ◦C. Angew. Chem. Int. Ed. 2019, 58, 16994–16999. [CrossRef] 75. Bi, H.; Wang, X.; Liu, H.; He, Y.; Wang, W.; Deng, W.; Ma, X.; Wang, Y.; Rao, W.; Chai, Y. A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 2020, 32, 2000074. [CrossRef] 76. Wang, X.; Huang, H.; Zhou, F.; Das, P.; Wen, P.; Zheng, S.; Lu, P.; Yu, Y.; Wu, Z.-S. High-voltage aqueous planar symmetric sodium ion micro-batteries with superior performance at low-temperature of −40 ◦C. Nano Energy 2021, 82, 105688. [CrossRef] 77. Du, G.; Tao, M.; Li, J.; Yang, T.; Gao, W.; Deng, J.; Qi, Y.; Bao, S.J.; Xu, M. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode. Adv. Energy Mater. 2020, 10, 1903351. [CrossRef] 78. Yang, J.; Zhang, M.; Chen, Z.; Du, X.; Huang, S.; Tang, B.; Dong, T.; Wu, H.; Yu, Z.; Zhang, J. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 2019, 12, 2230–2237. [CrossRef] 79. Wen, P.; Lu, P.; Shi, X.; Yao, Y.; Shi, H.; Liu, H.; Yu, Y.; Wu, Z.S. Photopolymerized gel electrolyte with unprecedented room- temperature ionic conductivity for high-energy-density solid-state sodium metal batteries. Adv. Energy Mater. 2021, 11, 2002930. [CrossRef] 80. Kim, J.K.; Lim, Y.J.; Kim, H.; Cho, G.B.; Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 2015, 8, 3589–3596. [CrossRef]

PDF Image | Na Ion Batteries Used at Low Temperatures

na-ion-batteries-used-at-low-temperatures-028

PDF Search Title:

Na Ion Batteries Used at Low Temperatures

Original File Name Searched:

nanomaterials-12-03529-v4.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP