logo

NaFe0 Nanocomposite as a Cathode for Sodium-Ion Batteries

PDF Publication Title:

NaFe0 Nanocomposite as a Cathode for Sodium-Ion Batteries ( nafe0-nanocomposite-as-cathode-sodium-ion-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

Nanomaterials 2022, 12, 984 10 of 11 11. Santhoshkumar, P.; Shaji, N.; Sim, G.S.; Nanthagopal, M.; Park, J.W.; Lee, C.W. Facile and solvothermal synthesis of rationally designed mesoporous NiCoSe2 nanostructure and its improved lithium and sodium storage properties. Appl. Mater. Today 2020, 21, 100807. [CrossRef] 12. Cai, P.; Zou, K.; Deng, X.; Wang, B.; Zheng, M.; Li, L.; Hou, H.; Zou, G.; Ji, X. Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments. Adv. Energy Mater. 2021, 11, 2003804. [CrossRef] 13. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. The demand for lithium-ion batteries (LIBs) has been increasing since their commer- cialization in 1991 and their widespread use in portable electronics. Nat. Rev. Mater. 2018, 3, 18013. [CrossRef] 14. Liu, T.; Zhang, Y.; Jiang, Z.; Zeng, X.; Ji, J.; Li, Z.; Gao, X.; Sun, M.; Lin, Z.; Ling, M.; et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 2019, 12, 1512–1533. [CrossRef] 15. Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [CrossRef] 16. Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions. J. Electrochem. Soc. 2017, 164, A54–A60. [CrossRef] 17. Rajagopalan, R.; Tang, Y.; Jia, C.; Ji, X.; Wang, H. Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: Issues and solutions. Energy Environ. Sci. 2020, 13, 1568–1592. [CrossRef] 18. Shaji, N.; Santhoshkumar, P.; Kang, H.S.; Nanthagopal, M.; Park, J.W.; Praveen, S.; Sim, G.S.; Senthil, C.; Lee, C.W. Tin selenide/N- doped carbon composite as a conversion and alloying type anode for sodium-ion batteries. J. Alloys Compd. 2020, 834, 154304. [CrossRef] 19. Yin, X.; Sarkar, S.; Shi, S.; Huang, Q.A.; Zhao, H.; Yan, L.; Zhao, Y.; Zhang, J. Recent Progress in Advanced Organic Electrode Materials for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Adv. Funct. Mater. 2020, 30, 1908445. [CrossRef] 20. Zhang, L.; Yuan, T.; Soule, L.; Sun, H.; Pang, Y.; Yang, J.; Zheng, S. Enhanced Ionic Transport and Structural Stability of Nb-Doped O3-NaFe0.55Mn0.45 - xNbxO2Cathode Material for Long-Lasting Sodium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 3770–3778. [CrossRef] 21. Shaji, N.; Ho, C.W.; Nanthagopal, M.; Santhoshkumar, P.; Sim, G.S.; Lee, C.W. Biowaste-derived heteroatoms-doped carbon for sustainable sodium-ion storage. J. Alloys Compd. 2021, 872, 159670. [CrossRef] 22. Burda, J.V.; Šponer, J.; Hobza, P. Ab initio study of the interaction of guanine and adenine with various mono-and bivalent metal cations (Li+, Na+, K+, Rb+, Cs+; Cu+, Ag+, Au+; Mg2+, Ca2+, Sr2+, Ba2+; Zn2+, Cd2+, and Hg2+). J. Phys. Chem. 1996, 100, 7250–7255. [CrossRef] 23. Sun, Y.; Shi, P.; Chen, J.; Wu, Q.; Liang, X.; Rui, X.; Xiang, H.; Yu, Y. Development and challenge of advanced nonaqueous sodium ion batteries. EnergyChem 2020, 2, 100031. [CrossRef] 24. Xiang, X.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364. [CrossRef] 25. Batteries, S.; Mauger, A.; Julien, C.M. State-of-the-Art Electrode Materials for Sodium-Ion Batteries. Materials 2020, 13, 3453. 26. Minakshi, M.; Mitchell, D.R.; Munnangi, A.R.; Barlow, A.J.; Fichtner, M. New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices. Nanoscale 2018, 10, 13277–13288. [CrossRef] 27. Minakshi, M.; Mitchell, D.R.; Baur, C.; Chable, J.; Barlow, A.J.; Fichtner, M.; Banerjee, A.; Chakraborty, S.; Ahuja, R. Phase evolution in calcium molybdate nanoparticles as a function of synthesis temperature and its electrochemical effect on energy storage. Nanoscale Adv. 2019, 1, 565–580. [CrossRef] 28. Zhao, C.; Yao, Z.; Wang, Q.; Li, H.; Wang, J.; Liu, M.; Ganapathy, S.; Lu, Y.; Cabana, J.; Li, B.; et al. Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. J. Am. Chem. Soc. 2020, 142, 5742–5750. [CrossRef] [PubMed] 29. Mathiyalagan, K.; Ponnaiah, A.; Karuppiah, K.; Rengapillai, S.; Marimuthu, S. Enhanced performance on layered O3-Na0.95CrO2 cathode material for emerging sodium-ion batteries. Ionics 2020, 26, 3929–3936. [CrossRef] 30. Xiao, Y.; Zhu, Y.F.; Yao, H.R.; Wang, P.F.; Zhang, X.D.; Li, H.; Yang, X.; Gu, L.; Li, Y.C.; Wang, T.; et al. A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery. Adv. Energy Mater. 2019, 9, 1803978. [CrossRef] 31. Liu, Z.; Jiang, K.; Chu, S.; Wu, J.; Xu, H.; Zhang, X.; Wang, P.; Guo, S.; Zhou, H. Integrating P2 into O′3 toward a robust Mn-Based layered cathode for sodium-ion batteries. J. Mater. Chem. A 2020, 8, 23820–23826. [CrossRef] 32. Rong, X.; Qi, X.; Lu, Y.; Wang, Y.; Li, Y.; Jiang, L.; Yang, K.; Gao, F.; Huang, X.; Chen, L.; et al. A new Tin-based O3- Na0.9[Ni0.45−x/2MnxSn0.55−x/2]O2 as sodium-ion battery cathode. J. Energy Chem. 2019, 31, 132–137. [CrossRef] 33. Zhao, C.; Ding, F.; Lu, Y.; Chen, L.; Hu, Y.S. High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2020, 59, 264–269. [CrossRef] 34. Tripathi, A.; Rudola, A.; Gajjela, S.R.; Xi, S.; Balaya, P. Developing an O3 type layered oxide cathode and its application in 18650 commercial type Na-ion batteries. J. Mater. Chem. A 2019, 7, 25944–25960. [CrossRef] 35. You, Y.; Xin, S.; Asl, H.Y.; Li, W.; Wang, P.F.; Guo, Y.G.; Manthiram, A. Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries. Chem 2018, 4, 2124–2139. [CrossRef] 36. Hwang, T.; Lee, J.H.; Choi, S.H.; Oh, R.G.; Kim, D.; Cho, M.; Cho, W.; Park, M.S. Critical Role of Titanium in O3-Type Layered Cathode Materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 30894–30901. [CrossRef] [PubMed]

PDF Image | NaFe0 Nanocomposite as a Cathode for Sodium-Ion Batteries

nafe0-nanocomposite-as-cathode-sodium-ion-batteries-010

PDF Search Title:

NaFe0 Nanocomposite as a Cathode for Sodium-Ion Batteries

Original File Name Searched:

nanomaterials-12-00984-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP