logo

Phosphonium Iongels for Solid-State Sodium Metal Batteries

PDF Publication Title:

Phosphonium Iongels for Solid-State Sodium Metal Batteries ( phosphonium-iongels-solid-state-sodium-metal-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 007

Gels 2022, 8, 725 7 of 7 References Conflicts of Interest: The authors declare no conflict of interest. 1. Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D.P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386. [CrossRef] 2. Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [CrossRef] 3. Kulova, T.L.; Fateev, V.N.; Seregina, E.A.; Grigoriev, A.S. A brief review of post-lithium-ion batteries. Int. J. Electrochem. Sci. 2020, 15, 7242–7259. [CrossRef] 4. Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacín, M.R. Multivalent rechargeable batteries. Energy Storage Mater. 2019, 20, 253–262. [CrossRef] 5. Yang, J.; Zhang, H.; Zhou, Q.; Qu, H.; Dong, T.; Zhang, M.; Tang, B.; Zhang, J.; Cui, G. Safety-enhanced polymer electrolytes for sodium batteries: Recent progress and perspectives. ACS Appl. Mater. Interfaces 2019, 11, 17109–17127. [CrossRef] [PubMed] 6. Gebert, F.; Knott, J.; Gorkin III, R.; Chou, S.-L.; Dou, S.-X. Polymer electrolytes for sodium-ion batteries. Energy Storage Mater. 2021, 36, 10–30. [CrossRef] 7. Rakov, D.A.; Chen, F.; Ferdousi, S.A.; Li, H.; Pathirana, T.; Simonov, A.N.; Howlett, P.C.; Atkin, R.; Forsyth, M. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nat. Mater. 2020, 19, 1096–1101. [CrossRef] [PubMed] 8. Sun, J.; O’Dell, L.A.; Armand, M.; Howlett, P.C.; Forsyth, M. Anion-Derived Solid-Electrolyte Interphase Enables Long Life Na-Ion Batteries Using Superconcentrated Ionic Liquid Electrolytes. ACS Energy Lett. 2021, 6, 2481–2490. [CrossRef] 9. Hilder, M.; Howlett, P.C.; Saurel, D.; Gonzalo, E.; Armand, M.; Rojo, T.; Macfarlane, D.R.; Forsyth, M. Small quaternary alkyl phosphonium bis (fluorosulfonyl) imide ionic liquid electrolytes for sodium-ion batteries with P2-and O3-Na2/3 [Fe2/3Mn1/3] O2 cathode material. J. Power Sources 2017, 349, 45–51. [CrossRef] 10. Ferdousi, S.A.; O’Dell, L.A.; Sun, J.; Hora, Y.; Forsyth, M.; Howlett, P.C. High-Performance Cycling of Na Metal Anodes in Phosphonium and Pyrrolidinium Fluoro (sulfonyl) imide Based Ionic Liquid Electrolytes. ACS Appl. Mater. Interfaces 2022, 14, 15784–15798. [CrossRef] [PubMed] 11. Kalhoff, J.; Eshetu, G.G.; Bresser, D.; Passerini, S. Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem 2015, 8, 2154–2175. [CrossRef] [PubMed] 12. Fdz De Anastro, A.; Porcarelli, L.; Hilder, M.; Berlanga, C.; Galceran, M.; Howlett, P.; Forsyth, M.; Mecerreyes, D. UV-cross-linked ionogels for all-solid-state rechargeable sodium batteries. ACS Appl. Energy Mater. 2019, 2, 6960–6966. [CrossRef] 13. Chereddy, S.; Aguirre, J.; Dikin, D.; Wunder, S.L.; Chinnam, P.R. Gel electrolyte comprising solvate ionic liquid and methyl cellulose. ACS Appl. Energy Mater. 2019, 3, 279–289. [CrossRef] 14. Kido, R.; Ueno, K.; Iwata, K.; Kitazawa, Y.; Imaizumi, S.; Mandai, T.; Dokko, K.; Watanabe, M. Li+ ion transport in polymer electrolytes based on a glyme-Li salt solvate ionic liquid. Electrochim. Acta 2015, 175, 5–12. [CrossRef] 15. Hubble, D.; Qin, J.; Lin, F.; Murphy, I.A.; Jang, S.-H.; Yang, J.; Jen, A.K.-Y. Designing solvate ionogel electrolytes with very high room-temperature conductivity and lithium transference number. J. Mater. Chem. A 2018, 6, 24100–24106. [CrossRef] 16. Casas-Cabanas, M.; Roddatis, V.V.; Saurel, D.; Kubiak, P.; Carretero-González, J.; Palomares, V.; Serras, P.; Rojo, T. Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. J. Mater. Chem. 2012, 22, 17421–17423. [CrossRef] 17. Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. J. Mater. Chem. A 2014, 2, 5655–5661. [CrossRef] 18. Galceran, M.; Saurel, D.; Acebedo, B.; Roddatis, V.V.; Martin, E.; Rojo, T.; Casas-Cabanas, M. The mechanism of NaFePO4 (de) sodiation determined by in situ X-ray diffraction. Phys. Chem. Chem. Phys. 2014, 16, 8837–8842. [CrossRef] [PubMed] 19. Berlanga, C.; Monterrubio, I.; Armand, M.; Rojo, T.; Galceran, M.; Casas-Cabanas, M. Cost-effective synthesis of triphylite- NaFePO4 cathode: A zero-waste process. ACS Sustain. Chem. Eng. 2019, 8, 725–730. [CrossRef] 20. Saurel, D.; Giner, M.; Galceran, M.; Rodríguez-Carvajal, J.; Reynaud, M.; Casas-Cabanas, M. The triphylite NaFe1-yMnyPO4 solid solution (0≤ y≤ 1): Kinetic strain accommodation in NaxFe0.8 Mn0.2PO4. Electrochim. Acta 2022, 425, 140650. [CrossRef]

PDF Image | Phosphonium Iongels for Solid-State Sodium Metal Batteries

phosphonium-iongels-solid-state-sodium-metal-batteries-007

PDF Search Title:

Phosphonium Iongels for Solid-State Sodium Metal Batteries

Original File Name Searched:

gels-08-00725.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Salt water flow battery technology with low cost and great energy density that can be used for power storage and thermal storage. Let us de-risk your production using our license. Our aqueous flow battery is less cost than Tesla Megapack and available faster. Redox flow battery. No membrane needed like with Vanadium, or Bromine. Salgenx flow battery

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP